
Master 2 Informatique
Université de Bordeaux I

Projet d’Étude et de Recherche

Concurrent kernel execution on Graphic Processing Units

Adrien Cassagne, Aurélien George, Benjamin Lorendeau,
Jean-Charles Papin, Antoine Rougier

Supervised by S. Chaumette, J.C. Coquilhat and P. Desbarat
Articles proposed by Raymond Namyst

Bordeaux, January 23, 2013

Contents

I Introduction . 4
II Concurrent kernel execution . 5

II.1 Issues . 5
II.2 State-of-the-Art . 5

III Two points of view . 7
III.1 Approach based on OpenCL . 7

A A software approach . 7
B Limits and results . 8

III.2 Method using CUDA . 9
A Context switching . 9
B Manual Context funneling 9
C Auto Context funneling 10
D Limits and results . 10

IV Experimentation . 12
IV.1 Experimentation platform . 12
IV.2 Experimental kernels . 13

A kern_n2 . 13
B kern_mem . 13
C kern_mat_mult_perf 14

IV.3 Benefits of concurrent kernel execution 15
IV.4 Core occupation improvement by concurrent kernel 17
IV.5 About CUDA 5.0 scheduling kernels 18

V Conclusion . 21
Bibliography . 22

List of Figures

1 The black boxes represent one kernel and the white boxes represent the
other. WG is a scheduler workgroup on a GPU. 7

2 Merged runtimes to sequential runtimes Gregg et al. [4] 8
3 Context switching model. Wang et al. [2] 9
4 Manual context funneling model. Wang et al. [2] 9
5 Auto context funneling model. Wang et al. [2] 10
6 Context switching and funneling speedup. Wang et al. [2] 10
7 Execution time of auto and manual context funneling. Wang et al. [2] . . 11
8 CPU and GPU architecture . 12
9 Concurrent execution versus sequential execution of kernels n2 15
10 Data transfer kernel covered up by execution of compute kernel n2 16
11 Concurrent vs sequential execution of kernels (kern_mat_mult_perf) . . 17
12 Sequential kernels (call of kern_mat_mult_perf 4 time) 18
13 Concurrent kernels (call of kern_mat_mult_perf 4 time) 18
14 Sequential kernels (call of kern_mem before kern_n2) 19
15 Concurrent kernels (call of kern_mem before kern_n2) 19
16 Concurrent kernels (call of kern_mem before kern_n2) on Kepler 20
17 Concurrent kernels (call of kern_n2 before kern_mem) 20

I Introduction
General Purpose Graphic Processing Unit (GPGPU) are now used in high performance
computing (HPC) for their massively parallel computing aspect and capabilities. Those
devices integrate hundreds of computing unit (computing core). Usually, such a level of
parallelism is used to solve simulation problems (heat transfer, ...) because of the numer-
ical representation of simulated environment (matrices).

Those GPU can be programmed with specific programming languages like CUDA1

and OpenCL2 which provide a standard environment (C/C++ libraries).
Programs executed on a GPU (also called kernels) are executed sequentially. However,
in order to maximize the usage of GPU resources, some advanced features (developed by
NVIDIA) allow programmers to execute severals kernels in parallel on the GPU.

Unfortunately, concurrent kernels execution is only possible with CUDA on NVIDIA
graphics cards. For other cards, OpenCL does not offer this functionality. That is why
researchers from University of Virginia (USA) [2], tried to extend OpenCL standard by
allowing execution of an “master kernel” which will launch other kernels. In fact, the
”master kernel“ is a mix of memory-bound and compute-bound kernels. By doing this,
they could evaluate the advantage of this kind of solution.

Another group of researchers (from University of George Washington and from Uni-
versity of Arkansas), designed a software environment that allows different threads from
the same process to share access to the GPU, which wasn’t possible until the introduction
of the “Automatic Context Funneling” [2] capabilities in CUDA 4.0.

For our PER (Projet d’Étude et de Recherche), we will analyse the benefits and limi-
tations of concurrent kernel execution. We will also determine if parallel kernel execution
can be used to avoid the cost of data transfers from the host to the GPU (by starting
long computing time kernel before starting data transfers).

1NVIDIA Software development kit
2Open standard maintained by the consortium Khronos Group [1]

4

II Concurrent kernel execution
II.1 Issues
GPU programming is not simple. Indeed, it is based on the SIMD3 model. That means
one single instruction can be execute on different data at a time. It needs specifics al-
gorithms which have to express lot of parallelism. As an example, we can imagine an
algorithm which has to apply the same function to each pixel (block of pixels) in a picture.
Executing each process at the same time on several processing units is a major process
in order to gain performance.

The first step in GPU programming is to make an efficient kernel. When we talk
about efficient kernel, it means we want to maximize the GPU resources usage. It is not
always an obvious job because the kernel has to be fine-grained. Indeed, some kernels
can’t express enough parallelism because of their memory or computing bound.

In order to maximize the GPU resources usage, NVIDIA introduced a technology
called "concurrent kernels". This new feature allows programmers to start several kernel
instances on the same GPU.

II.2 State-of-the-Art
To design a GPU program, there are two major frameworks : CUDA [3] and OpenCL4 [1].
CUDA is a Software Development Kit designed by NVIDIA, which allows to create pro-
grams that will run on NVIDIA GPU cards. OpenCL is an alternative framework to
CUDA that can also execute kernels on GPU. OpenCL is an open standard maintained
by Khronos Group gathering Intel, AMD, and NVIDIA.

As explained previously, CUDA allows concurrent kernel execution. Initially intro-
duced into Fermi cards (see NVIDIA’s architecture time line 1), this feature was a little
bit restrictive: only one application can use GPU at a time, and for this application, only
one thread can use the GPU at a time. Concurrent kernel was so limited by the ability
of each thread to start concurrent kernels.

Year Architecture
2007 Tesla
2010 Fermi
2012 Kepler

Table 1: Time line of NVIDIA architecture

The article "Exploiting Concurrent Kernel Execution on Graphic Processing Unit" [2],
explains how we can avoid this limitation by using a "master" thread which will use the

3Single Instruction Multiple Data
4Open Computing Language

5

GPU: all other application threads will then use GPU ressources by submitting kernels
to the master thread.

Later, in CUDA 4.0, NVIDIA introduced "Automatic Context Funneling" which al-
lows application threads to use GPU independently. Finally, with latest NVIDIA graphic
cards architecture (Kepler), and CUDA 5.x, it is now possible to use GPU across different
applications and different threads.

For OpenCL programs, it’s not possible to run concurrent kernels as in NVIDIA
technology. However, it’s possible to bypass this limitation by hijacking OpenCL. This
technique is developped in the article "Fine-Grained Ressource Sharing for Concurrent
GPGPU Kernels" [4] and will be aborder in the next chapter.

NVIDIA CUDA Architecture CUDA OpenCL
ToolKit introduced Inovation Inovation
1.0 (2007) Tesla First CUDA release

...
3.0 (2010) Fermi First OpenCL Implementation

...
3.2 (2010) Context Switching Pseudo concurrent

Manual Context Funneling [2] kernel [4]
4.0 (2011) Automatic Context Switching

...
5.0 (2012) Kepler -Hyper-Q (GPU shared

among multiple applications)

Table 2: Major NVIDIA/OpenCL dates

6

III Two points of view
III.1 Approach based on OpenCL
With OpenCL, it is not possible to run concurrent kernels. But a method which consists
in merging several kernels into one big kernel to execute them at the same time. This
method has been implemented in Fine-grained resource sharing for concurrent GPGPU
kernels [4] which we now explain.

A A software approach

In this article, researchers chose a software solution. Among OpenCL’s methods, there is
a method called clEnqueueNDRangeKernel(), this is a method which executes a single
kernel on the GPU. They created a scheduler called KernelMerge which combines two
invocations of clEnqueueNDRangeKernel() into a single kernel. In other words, the GPU
executes a single kernel built by KernelMerge which mixes smartly the two kernels to
use maximum power of the GPU.

Figure 1: The black boxes represent one ker-
nel and the white boxes represent the other.
WG is a scheduler workgroup on a GPU.

They implemented two algorithms in
KernelMerge which combine two kernels.
The first is based on a round-robin work-
stealing algorithm that assigns work from
each kernel on a first-come, first-served ba-
sis. The second algorithm assigns a fixed
percentage of ressources to each individual
kernel. The figure 1 is a good view of these
algorithms. We can see easily how the first
algorithm distributes tasks between sched-
uler workgroups. The second algorithm as-
signs scheduler workgroups between both
kernels and the number of scheduler work-
groups is chosen between the two kernels
depending on their percentage of work.

7

B Limits and results

To evaluate their KernelMerge they ran pairs of kernels concurrently, then ran both
kernels sequentially. Comparing both executions, they got a speedup which is upper to
1 for only 39% of the paired kernels tested, the best pair achieves 1.2 speedup, the worst
pair is 3 times slower than the sequential version.

Figure 2: Merged runtimes to sequential runtimes
Gregg et al. [4]

KernelMerge is obviously not a good way to increase performance on the GPU.
Scheduling pair of kernels is not a simple problem and requires a hard analysis to be
efficient. Making a scheduler for a GPU is even more complicated and in this article, re-
searchers had thought about heterogeneous kernels (a kernel which uses many computing
ressources and few data ressources, and conversely for the other kernel) complement each
other. The simple fact of scheduling produces an overhead, but it doesn’t lose much time
in most kernels. The main limit is that two kernels can’t be associated in most cases,
on the contrary if they ran concurrently, they use same ressources simulteneously and
penalize each other.

8

III.2 Method using CUDA
Until recently kernels could only execute sequentially but concurrent multi-kernel exe-
cution over GPU has been recently introduced by NVIDIA in their previous GPU ar-
chitecture called Fermi. While it is a strong improvement it has one peculiar drawback
that only kernels of the same host thread context can execute in parallel5. Thus kernels
from different contexts still have to execute sequentially, inducing context switching and
overhead.

A Context switching

Figure 3: Context switching model. Wang
et al. [2]

Before Fermi GPUs, context switching was
the only option to access GPU ressources.
This method only allows to have differ-
ent application threads to be queued, thus
each application thread will be executed
sequentially. It is easy to see how this im-
plementation is limited since if the applica-
tion thread which has access to GPU does
not express parallelism, it will use only one
tiny percentage of theses resources while
other threads could have the use of GPU
left resources. Besides, context switching
implies overhead due to the time needed
to store and restore the state of different
contexts.

B Manual Context funneling

Figure 4: Manual context funneling model.
Wang et al. [2]

To address this peculiar problem, Wang
et al. have experimented manual con-
text funneling to deal with the limi-
tations of context switching. As we
can see on the left-sided picture, there
is only one context and each applica-
tion thread must access GPU resources
through a master thread. Thanks to
this method, each thread can be exe-
cuted concurrently. Thus, we remove
the context switching overhead and let
all threads have the possibility to ac-
cess GPU resources through one master
thread.

5This has been fixed with Kepler GPUs, the latest NVIDIA GPU architecture.

9

C Auto Context funneling

Figure 5: Auto context funneling model.
Wang et al. [2]

Since NVIDIA CUDA 4.0, there is no need
for specific software implementation of the
context funneling method. According to
NVIDIA, the new model for runtime pro-
gram is "one context per device per pro-
cess". Thus, this provides auto context
funneling and removes any need of con-
text switching or manual context funnel-
ing. While it is quite similar to the man-
ual context funneling designed by Wang
et al. it provides two interesting features
as it makes memory shared between ap-
plication threads and removes the master
thread mode, allowing all threads to access
GPU resources.

D Limits and results

One of the limits of both manual and auto
context funneling is that it is still not possible to have different applications be executed
concurrently. NVIDIA has overcome this limitation with the latest GPU architecture :
Kepler. Overall performances of both manual and auto context funneling are really close,
and show performance improvements in comparison to context switching.

Figure 6: Context switching and funneling speedup.
Wang et al. [2]

In figure 5 produced by Wang
et al. in Exploiting Concur-
rent Kernel Execution on Graphic
Processing Units [2], we can see
the speedup gain produced by
the use of context funneling.
But we also can see, that in
a real application, performance
of context switching and con-
text funneling are nearly the
same when the number of cpu
threads is low (2) but also that
the difference becomes stronger
as this number grows. It is
one limitation of context switch-
ing.

10

Figure 7: Execution time of auto and man-
ual context funneling. Wang et al. [2]

In figure 4 produced by Wang et al.
in Exploiting Concurrent Kernel Execution
on Graphic Processing Units [2], we can see
that auto and manual context funneling
both perform the same way. While it can
be seen as a good point for Wang et al. it
lets us think that interest of using manual
over auto funneling are limited. Indeed, if
the same performances can be achieved us-
ing CUDA 4.0 auto funneling, why would
we want to make the use of manual funnel-
ing. However, when control over data and
task dependencies is important, it might
be easier to do it using manual funneling.

11

IV Experimentation
Our experiments are focused on concurrent kernels. We’d like to analyse the advantages of
executing several kernels at a time and to highlight some new programming mechanisms
in order to maximize performances.

Figure 8: CPU and GPU architecture

Figure 8 shows you a classic architecture with a CPU and a GPU. Notice that you
have to copy host memory to device memory when you want to execute a GPU kernel.
This transfer can take time because it has to use the PCI Express port.

IV.1 Experimentation platform
For our experimentations, we use CUDA 5 and machines from the CREMI (Centre de
ressources pour l’Enseignement des Mathématiques et de l’Informatique) of the University
of Bordeaux 1, and personal machines.

Quadro 4000 GeForce 660 GTX
Fermi architecture Kepler architecture
256 CUDA cores 960 CUDA cores

2 GB GDDR5 at 89.6 GB/s 2 GB GDDR5 at 144.2GB/s
Compute capabilities 2.0 Compute capabilities 3.0

(up to 4 concurrent kernels) (up to 16 concurrent kernels)

12

IV.2 Experimental kernels
A kern_n2

This kernel computes an n2 iterations (imbricated loops) of an non-pertinent operation.
We can tune the n numerical constant to change the computation time of this kernel. Even
if this kernel is completely non-efficient (the kernel doesn’t use all the GPU ressources),
it offers us an easy way to compare different kernel sizes.

1 __global__ void kern_n2 (unsigned i n t size)
2 {
3 /∗ i n i t v a r i a b l e s ∗/
4 unsigned i n t i , j , k = 12 , val = 0 ;
5
6 /∗ n^2 computation ∗/
7 f o r (i=0; i < size ; i++)
8 f o r (j=0; j < size ; j++)
9 val += (i + j / k) / size ;
10 }

B kern_mem

Unlike the previous to the previous kernel, this kernel uses data from the machine host.
We must allocate and transfer data from the machine memory to the GPU memory and
copy back GPU memory to host at the end. Like the previous kernel, we can tune the
size of the total size transfered to the GPU. Due to PCI-E port limitations, the transfer
time can be longer than the computation time on GPU. By combining this kernel with
kern_n2, we hope to show that we can cover the transfer time by computation time of
another kernel.

1 __global__ void kern_mem (const f l o a t ∗ inBuffer , f l o a t ∗ outBuffer)
2 {
3 /∗ de c l a r e some shared memory ∗/
4 __shared__ f l o a t shData [BLOCK_SIZE] ;
5
6 /∗ copy g l oba l memory in to shared memory ∗/
7 __syncthreads () ;
8 shData [threadIdx . x] = inBuffer [blockDim . x ∗ blockIdx . x + threadIdx . x] ;
9 __syncthreads () ;
10
11 /∗ do an add i t i on with shared memory (be t t e r than g l oba l memory) ∗/
12 f l o a t tmpVal ;
13 f o r (unsigned i n t i = 0 ; i < BLOCK_SIZE ; ++i)
14 tmpVal += shData [i] ;
15
16 /∗ wr i t e va lue in to g l oba l memory ∗/
17 outBuffer [blockDim . x ∗ blockIdx . x + threadIdx . x] = tmpVal ;
18 }

13

C kern_mat_mult_perf

This kernel computes the block matrix multiplication of the square matrix A by the
square matrix B into the matrix C. The main advantage of this kernel is that we can
launch several instances of this kernel on the GPU in order to solve different parts of the
matrix multiplication. Thus, by executing many instances of our kern_mat_mult_perf,
we hope to see an interesting speedup by using concurrent kernel execution.

1 __global__ void kern_mat_mult_perf (Matrix A , Matrix B , Matrix C)
2 {
3 /∗ de c l a r e some shared memory ∗/
4 __shared__ f l o a t shDataA [BLOCK_SIZE] [BLOCK_SIZE] ;
5 __shared__ f l o a t shDataB [BLOCK_SIZE] [BLOCK_SIZE] ;
6
7 f l o a t valC = 0 ;
8
9 /∗ compute matrix mu l t i p l i c a t i o n per b locks ∗/
10 f o r (unsigned i n t i=0; i < A . size ; i += BLOCK_SIZE)
11 {
12 /∗ copy g l oba l memory in to shared memory ∗/
13 __syncthreads () ;
14 copyGlobalMatrixBlockIntoSharedBlock (A , shDataA , . . .) ;
15 copyGlobalMatrixBlockIntoSharedBlock (B , shDataB , . . .) ;
16 __syncthreads () ;
17
18 /∗ f i n a l computation , matrix mu l tp l i c a t i on on shared memory ∗/
19 f o r (unsigned i n t j=0; j < BLOCK_SIZE ; ++j)
20 valC += shDataA [threadIdx . y] [j] ∗ shDataB [j] [threadIdx . x] ;
21 }
22
23 /∗ wr i t e r e s u l t i n to output C matrix ∗/
24 setMatrixValue (valC , C , . . .) ;
25 }

14

IV.3 Benefits of concurrent kernel execution
This first experimentation wants to demonstrate that we can cover up the computation
time of a specific kernel by executing a bigger kernel.

We made this experimentation in two different modes: synchronously (sequential) and
asynchronously (parallel). For each experiments we start two kernels: the first with a
fixed number of iterations (1024 here), and the second with a variable number of iterations
(from 1 to 2048).

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000

T
im

e
 (

s
)

Size of second kernel

Concurrent execution (asynchronous) versus sequential execution of kernels (synchronous) − Quadro 4000

Kernel n² asynchronous
Kernel n² synchronous

Figure 9: Concurrent execution versus sequential execution of kernels n2

The blue curve shows the concurrent kernel execution. We can see that when the
second kernel is executed with a number of iterations inferior to 1024, the total time of
execution (of both kernels) is limited by the execution time of the kernel with a fixed
number of iterations. When the second kernel goes over 1024 iterations, then we can note
that the total execution time increase. Thus, the computation time of the second kernel
is hidden for a number of iterations inferior to 1024.

The green curve corresponds to the total execution time of the two kernels syn-
chronously. We can see that the execution time increases with the number of iterations
of the second kernel.

15

In this experimentation, we want to show that we can cover up the cost of a trans-
fer from the host to the GPU. We launch concurrent execution of two different kernels
(kern_n2 and kern_mem).

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

T
im

e
 (

m
s
)

Data transferred on GPU

Data transfer kernel covered up by execution of compute kernel (n²) − GeForce GTX 660

2 asynchronous kernels
2 synchronous kernels

n² kernel alone
Memory kernel alone

Figure 10: Data transfer kernel covered up by execution of compute kernel n2

The red curve (kern_n2) corresponds to our reference curve: the execution time is
steady because of two main reasons. Firstly, the number of executions is constant, and
secondly kern_n2 doesn’t depend on transferred data. The brown curve corresponds to
our kern_mem execution: the execution time increase with the transfer size.

The blue curve corresponds to the execution of both kernels asynchronously. We can
see that when the time of the transfer does not exceed the computation time of kern_n2,
data can be transfered freely.

For the last curve (in green), we execute both kernels synchronously. We can see
that the total execution time is equal to the computation time of our kern_n2 plus the
transfer time of our kern_mem.

With these first experimentations, we have demonstrated that we can execute, transfer
data and cover up the execution of a kernel by a bigger kernel.

16

IV.4 Core occupation improvement by concurrent kernel
This second experimentation aims to evaluate the advantages of parallel execution of
kernels. This is why we use our kern_mat_mult_perf in that it can operate on different
parts of the initial matrix in an independent way.

 500

 1000

 1500

 2000

 2500

 2 4 6 8 10 12 14 16

T
im

e
 (

m
s
)

Square root of blocks number

Concurrent execution versus sequential execution of kernels − GeForce GTX 660

Asynchronous
Synchronous

Figure 11: Concurrent vs sequential execution of kernels (kern_mat_mult_perf)

For the matrix multiplication, we divide the three whole matrix in blocks. Each
group of block (from matrix A, B and C) is then associated to a kernel execution of
kern_mat_mult_perf.

Results, presented in figure 11, shows that a parallel execution of all kernels instances
is much more efficient than sequential execution. The difference between both types of ex-
ecution falls down when the number of blocks increases, because of the number of threads
allocated by each kernel execution: in each kernel execution, we set a fixed number of
threads. This number of threads is the same for each execution of our kernel. Thus, when
the number of blocks increases, the work size of each kernel execution decrease and the
execution time too.

To be be more specific, we execute our program on a GeForce GTX 660 which have
5 streaming multiprocessors (SMX). Be aware, in the figure 11, the number of blocks is
a square root. When the number of blocks exceeds the number of SMX, the time of the
synchronous version become closer of the asynchronous version.
However there is always a little speedup with asynchronous version until approximately
32 CUDA blocks.
Nevertheless, when we send a lot of kernels to GPU (asynchronous version), there is a
little overhead (blocks one by one).

17

IV.5 About CUDA 5.0 scheduling kernels
In this section, all figures are extracted from Nvidia Visual Profiler 5 (CUDA Toolkit 5).
We used the most up to date version of the software because it is the only one to provide
visualisation of concurrent execution on GPU.

Case of matrix mutiplication by blocks (kern_mat_mult_perf)
Figure 12 shows a scheduling without concurrent mecanisms. Green bars are the execution
of kernels. Each kernel executes the same code (SIMD code). Red bar show the profiling
overhead. You have to consider the figure without this overhead.

Figure 12: Sequential kernels (call of kern_mat_mult_perf 4 time)

Figure 13 exposes the benefit of using concurrent kernels. Let’s specify that we used
limited kernels. Each kernel doesn’t exploit the full ressources in order to determine
potential GPU concurrency.
In the figure 12 and 13, one kernel take one CUDA block and one CUDA block contain
256 threads.

Figure 13: Concurrent kernels (call of kern_mat_mult_perf 4 time)

As expected, we notice a good level of parallelism with concurrent kernels (figure 13).
But, we may also point out that kernels don’t start at the same time. There is here a
waste of time and a little limitation of concurrency on the GPU.

18

Case of concurrents kern_mem and kern_n2
For these measurement, we used two different kernels in order to represent a different
use case (not strictly SIMD executions). The first kernel is kern_mem (purple bar and
yellow bar) which does a little computation and an important transfer of memory (yellow
bar). Unlike the previous kernel, the second kernel (kern_n2, green bar) only does a
consequent computation.

We notice a visualisation problem with figure 14, 15, 16 and 17: we don’t see transfer
time between CPU memory and GPU memory (for kern_mem). However our tests (code
part) demonstrate that there is a copy. We don’t know if there is an NVIDIA Visual
Profiler 5 issue or a bug in our program.

Figure 14 shows sequential version: GPU execute kern_n2 and kern_mem separately.
We notice a little waste of time between the first and second execution. This is due to a
return back to the CPU.

Figure 14: Sequential kernels (call of kern_mem before kern_n2)

In figure 15, we execute concurrently these two kernels. We see that the kern_n2
execution start only when the execution part of kern_mem is over. Nevertheless, there is
a parallelism because kern_n2 is computing during kern_mem memory transfer.
Figure 15 was extract from a Fermi GPU (Quadro 4000).

Figure 15: Concurrent kernels (call of kern_mem before kern_n2)

19

In figure 16, we use the same program as in figure 15 but on another GPU (Geforce
GTX 660) with Kepler architecture. We don’t notice the anomaly anymore. We con-
clude that the Kepler scheduler is better than the Fermi scheduler. We tried the program
on another Fermi GPU (Quadro 600) with computation capability 2.1 and the problem
stayed the same.

Figure 16: Concurrent kernels (call of kern_mem before kern_n2) on Kepler

We succeeded in by-passing Fermi problem with inter changing calls between kern_mem
and kern_n2 (we call kern_n2 before kern_mem). With this solution, there is a perfect
concurrency (figure 17).
We also notice that kernel execution order on device (GPU) follow the order of kernels
calls on host (CPU).

Figure 17: Concurrent kernels (call of kern_n2 before kern_mem)

20

V Conclusion
According to the articles [2] [4] that we analysed, concurrency on GPU is a real issue.
Today NVIDIA Fermi and Kepler GPUs are ahead in the race to Exascale.

Our tests demonstrate the capacity and the efficiency of CUDA and especially of
concurrent kernels. Even if there are still some problems with concurrency on GPU (lim-
itations on number of kernels, black-box scheduling, etc.) we are optimistic with this
kind of programming.

Before the existence of a concurrency mechanism, GPU was too limited on particular
situations. Today we can consider and design large range problems on GPU. Moreover,
we see that some works begin to appear with OpenCL API. The solution brought by the
article is less convincing than the CUDA approach but there is hope that OpenCL will
evolve soon.

Even if we are very optimistic with kernels concurrency, we want to remind that a
barrier on GPU is the programming itself. APIs are a too complex (two very distinct
programming languages for a unique program) and we hope that this point will evolve in
the future (NVIDIA has already done a lot of work by supporting a C++ like language
for kernels).

Anyway, we can’t forget new alternatives on vector processing. For example, the Xeon
Phi, provided by Intel, also brings up a lot of parallelism with the advantage of being
fully x86/x64-compatible. Thus, actual parallel applications can be natively offloaded on
Intel Xeon Phi processor (even if to reach performance, code-tunning is still needed).

21

Bibliography

[1] Khronos web site. http://www.khronos.org/.

[2] Lingyuan Wang, Miaoqing Huang, and T. El-Ghazawi. Exploiting concurrent kernel
execution on graphic processing units. In High Performance Computing and Simula-
tion (HPCS), 2011 International Conference on, pages 24 –32, july 2011.

[3] Cuda web site. https://developer.nvidia.com/category/zone/cuda-zone.

[4] Chris Gregg, Jonathan Dorn, Kim Hazelwood, and Kevin Skadron. Fine-grained
resource sharing for concurrent gpgpu kernels. In Proceedings of the 4th USENIX
conference on Hot Topics in Parallelism, HotPar’12, pages 10–10, Berkeley, CA, USA,
2012. USENIX Association.

22

http://www.khronos.org/
https://developer.nvidia.com/category/zone/cuda-zone

	Introduction
	Concurrent kernel execution
	Issues
	State-of-the-Art

	Two points of view
	Approach based on OpenCL
	A software approach
	Limits and results

	Method using CUDA
	Context switching
	Manual Context funneling
	Auto Context funneling
	Limits and results

	Experimentation
	Experimentation platform
	Experimental kernels
	kern_n2
	kern_mem
	kern_mat_mult_perf

	Benefits of concurrent kernel execution
	Core occupation improvement by concurrent kernel
	About CUDA 5.0 scheduling kernels

	Conclusion
	Bibliography

