Fast simulation and prototyping with AFF3CT

Olivier Hartmann*
Romain Tajan*

Adrien Cassagne*'
Camille Leroux*

Mathieu Leonardon*
Bertrand Le Gal*

Thibaud Tonnellier*
Christophe Jego*

Guillaume Delbergue*
Olivier Aumage! Denis Barthou'

* IMS Lab, Bordeaux INP, France
t INRIA / LABRI, Univ. Bordeaux, INP, France

Abstract—This demonstration intends to present AFF3CT (A
Fast Forward 3rror Correction Tool). The main objective of
AFF3CT is to provide a portable, open source, fast and flexible
software to the channel coding community in such a way that
researchers can spend more time on channel coding / algorithmic
problems instead of software development issues. It is also
intended to facilitate the process of hardware verification and
debug with the objective of fast prototyping.

I. SIMULATION OF A DIGITAL COMMUNICATION CHAIN

Despite the wide variety of existing communication sys-
tems, all of them are based on a common abstract model that
was proposed by the genius founder of information theory,
Claude Shannon [1]. Figure 1 shows the synoptic of such a
communication chain. In this structure, the channel encoder
and decoder determine the achievable error rate of the system.
Moreover, the channel decoder is a large contributor in the
overall computational complexity of the system.

On the eve of the Sth generation of mobile communication
systems, one of the challenges is to imagine systems able to
transmit a huge amount of data in a very short amount of time
at a very small energy cost in a wide variety of environments.
In such a context, researchers work at refining some existing
coding schemes (encoder + decoder) in such a way that the
system has a low residual error rate and that the associated
decoder is fast, flexible and has a low complexity.

The validation of a new coding scheme requires the estimation
of the error rate performance. Unfortunately, most of the time,
no simple mathematical model exists to predict the perfor-
mance of a channel encoder/decoder. The only simple solution
is to perform a Monte Carlo simulation of the whole com-
munication chain: some data are pseudo-randomly generated,
encoded, modulated, noised, decoded and the performance is
estimated by measuring the Bit Error Rate (BER) and the
Frame Error Rate (FER) at the receiver side. This apparently
simple setup leads to three main problems.

Reproducibility: It is usually a tedious task to reproduce
the results from the literature. This can be explained by the
large amount of empirical parameters necessary to define one
communication system and not all of them are reported in
the publications. Moreover, it is rare that researchers actually
share the source code of their simulator. As a consequence, a
large amount of time is spent “reinventing the wheel” only to
be able to compare to the state-of-the-art results.

Simulation time: In order to accurately estimate the
FER/BER, one need to observe around 100 erroneous frames

< : Source Channel :

Source — Modulator
! Encoder Encoder i
} TRANSMITTER :
JCIITTITICICIITICIIIIIICIIIIIIIIIIIIIIIIIIIIT Channel
; RECEIVER |

Sink <—%— Source Channel 1 Demodulator 41—‘
. Decoder Decoder '
Fig. 1. Digital communication chain

after decoding. This means that measuring a FER of say
10~7 requires to simulate in average the transmission of
100x 107 = 10° frames. Assuming we are considering a frame
of 1000 bits, the simulator needs to emulate the transmission
of 10! bits. Keeping in mind that the decoding algorithm
can have a significant complexity, it happens that several
weeks or months are required to estimate the FER/BER of
a communication system.

Algorithmic heterogeneity: In the presented communica-
tion chain, there exists a large number of different channel
codes. For each kind of code, several algorithms can be used
for decoding. While it is quite simple to describe a unique
coding scheme, it is more of a challenge to have a unified
software description that supports all the coding schemes
and the associated algorithms. This difficulty comes from
the heterogeneity of data structures necessary to describe a
channel code and the associated decoder : Turbo codes [2] use
trellis, LDPC codes [3] are well defined on a factor graphs and
polar codes [4] are efficiently decoded using binary trees.

II. FAST, PORTABLE, AND FLEXIBLE SOFTWARE
SIMULATION OF COMMUNICATION SYSTEMS

The reproducibility issue pushes towards an open source
and portable software. As such, AFF3CT is available online
[5] under an MIT license. This license actually allows anyone
to download, modify or even sell the software. In terms of
portability, the tool can run on several platforms (x86, ARM,
Xeon Phi) and operating systems (Windows, MacOS and
Linux). It can be compiled with various compilation tools (gcc,
icc, clang and msvc).

In terms of simulation time, AFF3CT extensively uses
software parallelization techniques : SIMD intrinsics, multi-
threading and multi-node execution. On multi-node servers,
the speed scales linearly with the number of available cores.

Regarding the flexibility, AFF3CT already supports most
of the error correction codes included in the communication
standards (turbo codes, LDPC, polar codes, BCH, convolu-
tionnal codes...). Several modulation (PSK, QAM, CPM,...)
and channel types (AWGN, Rayleigh) are also supported.
Iterative demodulation/decoding is available for some coded
modulation schemes. The sparse code multiple access (SCMA)
technique is supported. Finally, AFF3CT can be used as a
C++ library giving the designer complete freedom to design
its own system using AFF3CT modules. In the perspective
of hardware implementation, all modules can be described in
SystemC. All these features can be used dynamically without
having to recompile the source code.

III. HARDWARE VERIFICATION AND PROTOTYPING

A major challenge that arises when implementing a commu-
nication system in hardware is the verification step. In the case
of error correction codes, it is a particularly difficult task due
to the resilient nature of the algorithms. Actually, a channel
decoder corrects errors. As a consequence, it is possible that
an erroneous VHDL description seems to work because the
algorithm itself corrects errors. In order to verify a hardware
decoder, one should generate a large number of test patterns
and perform a bit true comparison. AFF3CT allows to verify
a design with the concept of “hardware in the loop”. This
allows to easily perform the co-simulation of a communication
system: some modules can be described in software while
some others are implemented on FPGA devices. This provides
a simple way to verify and debug a hardware design. This
protocol can be used at any stage of the communication chain
to verify one or several modules.

IV. AFF3CT DEMONSTRATION

The objective of the demonstration is to highlight some of
the key features of AFF3CT such as the simulation speed, the
flexibility and the portability.

A. High speed software simulation on an x86 and ARM
processor

In the first setup, AFF3CT runs on a simple laptop. The
basic functionalities of the tool are explored : changing the
code type (turbo, LDPC, polar, ...), the decoder algorithm
(BP, SC, SCL, ...), the channel (AWGN, Rayleigh), ... For
each configuration, the error correction performance appears
dynamically as the simulation runs. The activation of different
run-time options shows how to speedup the simulation.

In order to show the portability of the tool, in the second
setup, AFF3CT runs on an ARM processor. The selected board
is XXX. The simulation speed is naturally lower than an x86
implementation but considering the power consumption, the
consumed energy is lower. This implementation is an efficient
solution for implementing a transmitter/receiver in an energy-
constrained software radio context.

e DO
‘ Random BCH BPSK AFF?)CT !
] Source Encoding Modulation E
! BCH Channel E
! . i
! | Error rate I Decoding <—‘ BPSK E
| | Computation Demodulation]
”””””””” [UART [i

BCH
Decoder

FPGA

Fig. 2. Co-simulation of a BCH decoder

B. Co-simulation and prototyping of a BCH decoder

The objective of this last setup is to show how AFF3CT
can be used to perform hardware verification and prototyping
of a communication chain. In this setup, we consider a
simple coding scheme including a BCH encoder and decoder.
At first, a pure software simulation is launched. The error
correction performance is plotted dynamically. Then, a Nexys-
4 development board, including a Xilinx Artix-7 FPGA, is
connected to the laptop. A hardware BCH decoder in the
form of a bitstream is then downloaded to the FPGA. Once
configured, the simulation is launched from the PC. AFF3CT
simulates the transmission of a first frame. The noisy frame
is then sent to the FPGA using the UART protocol. The
hardware BCH decoder processes the frame and sends it back
to the PC. AFF3CT can then proceed and perform the rest
of the processing for this frame. Once the number of residual
errors is updated, AFF3CT starts with a new frame, and so
on. The decoding performance appears to be equivalent to the
performance of the pure software simulation which shows that
the hardware BCH decoder is correctly implemented.

ACKNOWLEDGMENT

This work was funded by ANR NAND (ANR-15-CE25-
0006-01).

REFERENCES

[1] C. Shannon, “A mathematical theory of communication,” The Bell System
Technical Journal, 1948.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit
error-correcting coding and decoding: Turbo-codes. 1,” in IEEE ICC’93
Geneva., vol. 2. 1EEE, 1993, pp. 1064-1070.

[3] R. Gallager, “Low-density parity-check codes,” IRE Transactions on
information theory, vol. 8, no. 1, pp. 21-28, 1962.

[4] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions on Information Theory, vol. 55, no. 7, pp. 3051-3073, 2009.

[5S] AFF3CT : A Fast Forward 3rror Correction Tool. http://aff3ct.github.io.

