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Preface

This volume presents the papers accepted for the 28th International Workshop on
Languages and Compilers for Parallel Computing (LCPC), held during September
9–11, 2015, in Raleigh, North Carolina, USA. Following a long tradition, LCPC 2015
offered a valuable forum for sharing research on all aspects of concurrency: parallel
languages, parallel programming models, compilers, runtime systems, and tools. LCPC
2015 in addition encouraged work that went beyond the scope of scientific computing
and enabled parallel programming in new areas, such as mobile computing and data
centers.

LCPC 2015 received 44 abstract submissions, 37 of which turned into full sub-
missions. Each full submission received three independent reviews from the Program
Committee, and some submissions received an additional review from an external
expert reviewer. The Program Committee met to discuss each of the full submissions,
and decided to accept 19 regular papers. The accepted papers cover a range of
important topics on parallel computing, including programming models, communica-
tion and latency, optimizing frameworks, parallelizing compilers, correctness and
reliability, applications and data structures. LCPC 2015 additionally included four
posters on preliminary research results and reflection of past experiences.

LCPC 2015 was fortunate to include two keynote talks. Paul H.J. Kelly from
Imperial College, London, gave a talk titled “Synthesis Versus Analysis: What Do We
Actually Gain from Domain-Specificity?” Kelly reflected on the extensive experiences
that he and his collaborators had in domain-specific performance optimizations, and
offered a series of insights on the profitability of domain-specific optimizations. The
second talk, presented by Padma Raghavan from Pennsylvania State University, was
titled “Toward Programming Models for Parallel Processing of Sparse Data Sets.”
Raghavan discussed the utilization of fine-grain parallelism while reducing the latencies
of data accesses for data sets with many dimensions that are sparse.

LCPC 2015 held a panel on “Implications of Emerging Memory Technology (e.g.,
Persistent Memory, Stacked Memory, Processing in Memory) to the Research on
Compilers and Programming Systems.” The panelists include five experts on the topic:
Dhruva R. Chakrabarti from HP Labs, Rudolf Eigenmann from Purdue University,
David Padua from UIUC, Yan Solihin from NCSU, and Youtao Zhang from the
University of Pittsburgh. The panel stimulated discussions on the new challenges and
opportunities that emerging memory technology brings to compilers and programming
systems research.

We would like to thank all the participants of LCPC 2015 for making it a success.
The hard work by the Program Committee and external reviewers in reviewing the
submissions is key to ensuring a high-quality technical program. We are indebted to the
Steering Committee for the strong support. We give our special thanks to Lawrence
Rauchwerger for helping us with the workshop registration and many other organi-
zational issues. We are grateful for the financial support by Cisco, Huawei, Intel,
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NVIDIA, and NetApp. Finally, the workshop would not have been a success without
the excellent work by the volunteers: Amir Bahmani, Richa Budhiraja, Guoyang Chen,
Anwesha Das, Anwesha Das, Yufei Ding, Neha Gholkar, Neha Gholkar, Lin Ning,
Xing Pan, Apoorv Parle, Shanil Puri, Tao Qian, Tao Wang, Tiancong Wang, Zhipeng
Wei, Bagus Wibowo, and Qi Zhu.

December 2015 Xipeng Shen
Frank Mueller
James Tuck

VI Preface

adrien.cassagne@inria.fr



Organization

Workshop Chairs

Xipeng Shen North Carolina State University, USA
Frank Mueller North Carolina State University, USA
James Tuck North Carolina State University, USA

Workshop Committee

James Brodman Intel Corporation, USA
Calin Cascaval Qualcomm Research Silicon Valley Center, USA
Marcelo Cintra Intel Corporation, USA
Chen Ding University of Rochester, USA
Michael Garland NVIDIA Research, USA
Mike Hind IBM Research, USA
Hironori Kasahara Waseda University, Japan
Xiaoming Li University of Delaware, USA
Sam Midkiff Purdue University, USA
Pablo Montesinos Ortego Qualcomm Research Silicon Valley Center, USA
Peng Tu Intel Corporation, USA
Bo Wu Colorado School of Mines, USA
Qing Yi University of Colorado, Colorado Springs, CO, USA
Jidong Zhai Tsinghua University, China
Huiyang Zhou North Carolina State University, USA

Poster Selection Committee

Aparna
Chandramowlishwaran

University of California, Irvine, CA, USA

Xu Liu College of William and Mary, USA
Xipeng Shen North Carolina State University, USA
Zhijia Zhao University of California, Riverside, CA, USA

Steering Committee

Rudolf Eigenmann Purdue University, USA
Alex Nicolau University of California, Irvine, CA, USA
David Padua University of Illinois, USA
Lawrence Rauchwerger Texas A&M University, USA

adrien.cassagne@inria.fr



Contents

Programming Models

Size Oblivious Programming with InfiniMem . . . . . . . . . . . . . . . . . . . . . . . 3
Sai Charan Koduru, Rajiv Gupta, and Iulian Neamtiu

Low-Overhead Fault-Tolerance Support Using DISC Programming Model . . . 20
Mehmet Can Kurt, Bin Ren, and Gagan Agrawal

Efficient Support for Range Queries and Range Updates Using Contention
Adapting Search Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Konstantinos Sagonas and Kjell Winblad

Optimizing Framework

Polyhedral Optimizations for a Data-Flow Graph Language . . . . . . . . . . . . . 57
Alina Sbîrlea, Jun Shirako, Louis-Noël Pouchet, and Vivek Sarkar

Concurrent Cilk: Lazy Promotion from Tasks to Threads in C/C++. . . . . . . . 73
Christopher S. Zakian, Timothy A.K. Zakian, Abhishek Kulkarni,
Buddhika Chamith, and Ryan R. Newton

Interactive Composition of Compiler Optimizations . . . . . . . . . . . . . . . . . . . 91
Brandon Nesterenko, Wenwen Wang, and Qing Yi

Asynchronous Nested Parallelism for Dynamic Applications
in Distributed Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Ioannis Papadopoulos, Nathan Thomas, Adam Fidel, Dielli Hoxha,
Nancy M. Amato, and Lawrence Rauchwerger

Parallelizing Compiler

Multigrain Parallelization for Model-Based Design Applications
Using the OSCAR Compiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Dan Umeda, Takahiro Suzuki, Hiroki Mikami, Keiji Kimura,
and Hironori Kasahara

HYDRA: Extending Shared Address Programming
for Accelerator Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Putt Sakdhnagool, Amit Sabne, and Rudolf Eigenmann

Petal Tool for Analyzing and Transforming Legacy MPI Applications . . . . . . 156
Hadia Ahmed, Anthony Skjellum, and Peter Pirkelbauer

adrien.cassagne@inria.fr

http://dx.doi.org/10.1007/978-3-319-29778-1_1
http://dx.doi.org/10.1007/978-3-319-29778-1_2
http://dx.doi.org/10.1007/978-3-319-29778-1_3
http://dx.doi.org/10.1007/978-3-319-29778-1_3
http://dx.doi.org/10.1007/978-3-319-29778-1_4
http://dx.doi.org/10.1007/978-3-319-29778-1_5
http://dx.doi.org/10.1007/978-3-319-29778-1_6
http://dx.doi.org/10.1007/978-3-319-29778-1_7
http://dx.doi.org/10.1007/978-3-319-29778-1_7
http://dx.doi.org/10.1007/978-3-319-29778-1_8
http://dx.doi.org/10.1007/978-3-319-29778-1_8
http://dx.doi.org/10.1007/978-3-319-29778-1_9
http://dx.doi.org/10.1007/978-3-319-29778-1_9
http://dx.doi.org/10.1007/978-3-319-29778-1_10


Communication and Locality

Automatic and Efficient Data Host-Device Communication
for Many-Core Coprocessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Bin Ren, Nishkam Ravi, Yi Yang, Min Feng, Gagan Agrawal,
and Srimat Chakradhar

Topology-Aware Parallelism for NUMA Copying Collectors . . . . . . . . . . . . 191
Khaled Alnowaiser and Jeremy Singer

An Embedded DSL for High Performance Declarative Communication
with Correctness Guarantees in C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Nilesh Mahajan, Eric Holk, Arun Chauhan, and Andrew Lumsdaine

Parallel Applications and Data Structures

PNNU: Parallel Nearest-Neighbor Units for Learned Dictionaries . . . . . . . . . 223
H.T. Kung, Bradley McDanel, and Surat Teerapittayanon

Coarse Grain Task Parallelization of Earthquake Simulator GMS
Using OSCAR Compiler on Various Cc-NUMA Servers . . . . . . . . . . . . . . . 238

Mamoru Shimaoka, Yasutaka Wada, Keiji Kimura,
and Hironori Kasahara

Conc-Trees for Functional and Parallel Programming. . . . . . . . . . . . . . . . . . 254
Aleksandar Prokopec and Martin Odersky

Correctness and Reliability

Practical Floating-Point Divergence Detection. . . . . . . . . . . . . . . . . . . . . . . 271
Wei-Fan Chiang, Ganesh Gopalakrishnan, and Zvonimir Rakamarić

SMT Solving for the Theory of Ordering Constraints . . . . . . . . . . . . . . . . . 287
Cunjing Ge, Feifei Ma, Jeff Huang, and Jian Zhang

An Efficient, Portable and Generic Library for Successive Cancellation
Decoding of Polar Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Adrien Cassagne, Bertrand Le Gal, Camille Leroux, Olivier Aumage,
and Denis Barthou

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

X Contents

adrien.cassagne@inria.fr

http://dx.doi.org/10.1007/978-3-319-29778-1_11
http://dx.doi.org/10.1007/978-3-319-29778-1_11
http://dx.doi.org/10.1007/978-3-319-29778-1_12
http://dx.doi.org/10.1007/978-3-319-29778-1_13
http://dx.doi.org/10.1007/978-3-319-29778-1_13
http://dx.doi.org/10.1007/978-3-319-29778-1_14
http://dx.doi.org/10.1007/978-3-319-29778-1_15
http://dx.doi.org/10.1007/978-3-319-29778-1_15
http://dx.doi.org/10.1007/978-3-319-29778-1_16
http://dx.doi.org/10.1007/978-3-319-29778-1_17
http://dx.doi.org/10.1007/978-3-319-29778-1_18
http://dx.doi.org/10.1007/978-3-319-29778-1_19
http://dx.doi.org/10.1007/978-3-319-29778-1_19


Programming Models

adrien.cassagne@inria.fr



Size Oblivious Programming with InfiniMem

Sai Charan Koduru(B), Rajiv Gupta, and Iulian Neamtiu

Department of Computer Science and Engineering,
University of California, Riverside, USA
{scharan,gupta,neamtiu}@cs.ucr.edu

Abstract. Many recently proposed BigData processing frameworks
make programming easier, but typically expect the datasets to fit in
the memory of either a single multicore machine or a cluster of multi-
core machines. When this assumption does not hold, these frameworks
fail. We introduce the InfiniMem framework that enables size oblivious
processing of large collections of objects that do not fit in memory by
making them disk-resident. InfiniMem is easy to program with: the user
just indicates the large collections of objects that are to be made disk-
resident, while InfiniMem transparently handles their I/O management.
The InfiniMem library can manage a very large number of objects in a
uniform manner, even though the objects have different characteristics
and relationships which, when processed, give rise to a wide range of
access patterns requiring different organizations of data on the disk. We
demonstrate the ease of programming and versatility of InfiniMem with
3 different probabilistic analytics algorithms, 3 different graph process-
ing size oblivious frameworks; they require minimal effort, 6–9 additional
lines of code. We show that InfiniMem can successfully generate a mesh
with 7.5 million nodes and 300 million edges (4.5 GB on disk) in 40 min
and it performs the PageRank computation on a 14GB graph with
134 million vertices and 805 million edges at 14 min per iteration on an
8-core machine with 8GB RAM. Many graph generators and processing
frameworks cannot handle such large graphs. We also exploit InfiniMem
on a cluster to scale-up an object-based DSM.

1 Introduction

BigData processing frameworks are an important part of today’s data science
research and development. Much research has been devoted to scale-out perfor-
mance via distributed processing [8,12,13,17] and some recent research explores
scale-up [1,6,11,15,16,21]. However, these scale-up solutions typically assume
that the input dataset fits in memory. When this assumption does not hold,
they simply fail. For example, experiments by Bu et al. [4] show that differ-
ent open-source Big Data computing systems like Giraph [1], Spark [21], and
Mahout [19] often crash on various input graphs. Particularly, in one of the

This work was supported by NSF Grant CCF-1524852, CCF-1318103, CNS-1157377,
CCF-0963996, CCF-0905509, and a Google Research Award.

c© Springer International Publishing Switzerland 2016
X. Shen et al. (Eds.): LCPC 2015, LNCS 9519, pp. 3–19, 2016.
DOI: 10.1007/978-3-319-29778-1 1
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4 S.C. Koduru et al.

experiments, a 70 GB web graph dataset was partitioned across 180 machines
(each with 16 GB RAM) to perform the PageRank computation. However, all
the systems crashed with java.lang.OutOfMemoryError, even though there was
less than 500MB of data to be processed per machine. In our experiments we also
found that GTgraph’s popular R-MAT generator [2], a tool commonly used to
generate power-law graphs, crashed immediately with a Segmentation Fault from
memory allocation failure when we tried to generate a graph with 1M vertices
and 400M edges on a machine with 8 GB RAM.

Motivated by the above observations, in this paper, we develop InfiniMem,
a system that enables Size Oblivious Programming – the programmer develops
the applications without concern for the input sizes involved and InfiniMem
ensures that these applications do not run out of memory. Specifically, the Infin-
iMem library provides interfaces for transparently managing a large number
of objects stored in files on disk. For efficiency, InfiniMem implements differ-
ent read and write policies to handle objects that have different characteristics
(fixed size vs. variable size) and require different handling strategies (sequential
vs. random access I/O). We demonstrate the ease of programming with Infin-
iMem by programming BigData analysis applications like frequency estimation,
exact membership query, and Bloom filters. We further demonstrate the versatil-
ity of InfiniMem by developing size oblivious graph processing frameworks with
three different graph data representations: vertex data and edges in a single data
structure; decoupled vertex data and edges; and the shard representation used
by GraphChi [11]. One advantage of InfiniMem is that it allows researchers and
programmers to easily experiment with different data representations with mini-
mal additional programming effort. We evaluate various graph applications with
three different representations. For example, a quick and simple shard imple-
mentation of PageRank with InfiniMem performs within ∼30 % of GraphChi.

The remainder of the paper is organized as follows: Sect. 2 motivates the
problem and presents the requirements expected from a size oblivious program-
ming system. Section 3 introduces the programming interface for size oblivious
programming. Section 4 describes the object representation used by InfiniMem
in detail. Section 5 describes the experimental setup and results of our evaluation.
Related work and conclusions are presented in Sects. 6 and 7, respectively.

2 Size Oblivious Programming

The need to program processing of very large data sets is fairly common today.
Typically a processing task involves representing the data set as a large collec-
tion of objects and then performing analysis on them. When this large collection
of objects does not fit in memory, the programmer must spend considerable
effort on writing code to make use of disk storage to manage the large number
of objects. In this work we free the programmer from this burden by devel-
oping a system that allows the programmer to write size oblivious programs,
i.e., programs where the user need not explicitly deal with the complexity of
using disk storage to manage large collections of objects that cannot be held in

adrien.cassagne@inria.fr



Size Oblivious Programming with InfiniMem 5

available memory. To enable the successful execution of size oblivious programs,
we propose a general-purpose programming interface along with an I/O efficient
representation of objects on disk. We now introduce a few motivating applica-
tions and identify requirements to achieve I/O efficiency for our size oblivious
programming system.

Motivating Applications: Consider an application that is reading continu-
ously streaming input into a Hash Table in heap memory (lines 1–3, Algorithm1);
a website analytics data stream is an excellent example of this scenario. When
the memory gets full, the insert on line 3 could fail, resulting in an application
failure. Similarly, consider the GTGraph [2] graph generator which fails to gen-
erate a graph with 1M edges and 400M vertices. Consider a common approach
to graph generation which assumes that the entire graph can be held in memory
during generation, as illustrated by lines 8–15 in Algorithm 1. First, memory for
NUM-VERTICES is allocated (line 8) and then the undirected edges are generated
(lines 11-13). Note that the program can crash as early as line 8 when memory
allocation fails due to a large number of vertices. Finally, consider the problem
of graph processing, using SSSP as a proxy for a large class of graph process-
ing applications. Typically, such applications have three phases: (1) input, (2)
compute, and (3) output. The pseudocode for SSSP is outlined in lines 16–31 in
Algorithm 1, highlighting these three phases. Note that if the input graph does
not fit in memory, this program will not even begin execution.

Algorithm 1. Motivating applications: Membership Query, Mesh Gener-
ation and Graph Processing.

1 HashTable ht;

2 while read(value) do
3 ht.insert(value);

4 while more items do
5 if ht.find(item) then
6 print(“Item found”);

7 —————————————————
8 Mesh m(NUM-VERTICES)

9 foreach node n in Mesh m do
10 i ← rand(0, MAX);
11 for j=0; j < i; j++ do
12 n.addNeighbor(m[j]);
13 m[j].addNeighbor(n);

14 foreach Node n in Mesh m do
15 Write(n)

16 Graph g;
17 while not end of input file do
18 read next;
19 g.Add( α(next) );

20 repeat
21 termCondition ← true;
22 forall the Vertices v in g do
23 for int i=0; i<v.nbrs(); i++ do
24 Vertex n = v.neighbors[i];
25 if v.dst>n.dst+v.wt[i] then
26 v.dst←(n.dst+v.wt[i]);

27 if NOT converged then
28 termCondition ← false;

29 until termCondition is true;

30 foreach Node n in Graph g do
31 Write(n);

Our Solution: We focus on supporting size oblivious programming for
C++ programs via the InfiniMem C++ library and runtime. Examples in
Algorithm 1 indicate that the data structures that can grow very large are rep-
resented as collections of objects. Size Oblivious Programming with InfiniMem
simply requires programmers to identify potentially large collections of objects

adrien.cassagne@inria.fr



6 S.C. Koduru et al.

using very simple abstractions provided by the library and these collections are
transparently made disk-resident and can be efficiently and concurrent accessed.
We now analyze these representative applications to tease out the requirements
for size oblivious programming that have influenced the architecture of InfiniMem.

Let us reconsider the pseudocode in Algorithm 1, mindful of the requirement
of efficient I/O. Lines 5–6 will execute for every key in the input; similarly, lines
9 and 14 indicate that lines 10–13 and line 15 will be executed for every node in
the mesh. Similarly, line 22 indicates that lines 23–26 will be performed on every
vertex in the graph. It is natural to read a contiguous block of data so that no
additional I/O is required for lines 24–26 for the vertices and is an efficient disk
I/O property. Moreover, this would be useful for any application in general, by
way of decreasing I/O requests and batching as much I/O as possible. Therefore,
we have our first requirement:

Support for Efficient Block-Based IO.

Consider next, the example of the hash table where the input data is not
sorted; then, line 3 of Algorithm 1 motivates need for random access for indexing
into the hash table. As another example, observe that line 24 in Algorithm 1
fetches every neighbor of the current vertex. When part of this graph is disk-
resident, we need a way of efficiently fetching the neighbors, much like random
access in memory. This is important because any vertex in a graph serves two
roles: (1) vertex and (2) neighbor. For the role (1), if vertices are contiguously
stored on disk block-based I/O can be used. However, when the vertex is accessed
as a neighbor, the neighbor could be stored anywhere on disk, and thus requires
an imitation of random access on the disk. Hence our next requirement is:

Support for Efficient, Random Access to Data on Disk.

To make the case for our final requirement, consider a typical definition of
the HashTable shown in Fig. 1a. Each key can store multiple values to support
chaining. Clearly, each HashTableEntry is a variable sized entity, as it can hold
multiple values by chaining. As another example, consider the definition for a
Vertex shown in Fig. 1b: the size of neighbors array can vary; and with the
exception of the neighbors member, the size of a Vertex can be viewed as a
fixed-size object. When reading/writing data from/to the disk, one can devise
very fast block-based I/O for fixed-size data (Sect. 4). However, reading variable-
sized data requires remembering the size of the data and performing n reads of
appropriate sizes; this is particularly wasteful in terms of disk I/O bandwidth
utilization. For example, if the average number of neighbors is 10, every time
a distance value is needed, we will incur a 10x overhead in read but useless
data. As a final example, Fig. 1c is an example of an arbitrary container that
showcases the need for both fixed and variable sized data. Hence we arrive at
our final requirement from InfiniMem:

Support to speed up I/O for variable-sized data.

adrien.cassagne@inria.fr



Size Oblivious Programming with InfiniMem 7

The goal of InfiniMem is to transparently support disk-resident versions of object
collections so that they can grow to large sizes without causing programs to
crash. InfiniMem’s design allows size oblivious programming with little effort as
the programmer merely identifies the presence and processing of potentially large
object collections via InfiniMem’s simple programming interface. The details of
how InfiniMem manages I/O (i.e., uses block-based I/O, random access I/O,
and I/O for fixed and variable sized data) during processing of a disk-resident
data structure are hidden from the programmer.

template <typename K, typename V>
struct HashTableEntry {

K key;
V* values; /* for chaining */

};

(a) Hash Table

struct Vertex {
int distance;
int* weights; /*Edge weights*/
Vertex* neighbors; /*Array*/

};

(b) Graph Vertex

template<typename T>
struct Container{

T stackObjects[96]; /* Fixed */
T *heapObjects; /* Variable */

};

(c) Arbitrary container

Fig. 1. Common data structure declarations to motivate the need for explicit support
for fixed and variable sized data, block based and random IO.

3 The InfiniMem Programming Interface

InfiniMem is a C++ template library that allows programmers to identify size
oblivious versions of fixed- and variable-sized data collections and enables trans-
parent, efficient processing of these collections. We now describe InfiniMem’s
simple application programming interface (API) that powers size oblivious pro-
gramming. InfiniMem provides a high-level API with a default processing strat-
egy that hides I/O details from the programmer; however the programmer has
the flexibility to use the low-level API to implement any customized processing.

Identifying Large Collection of Objects: In InfiniMem, the programmer
identifies object collections that potentially grow large and need to be made disk-
resident. In addition, the programmer classifies them as fixed or variable sized.
This is achieved by using the Box and Bag abstractions respectively. The Box
abstraction can be used to hold fixed-size data, while the Bag holds flexible-sized
data. Figure 2 illustrates an example and lists the interface. The programmer uses
the Box or Bag interface by simply inheriting from the Box (or Bag) type and
provides an implementation for the update() method to process each object in
the container. Here, Container is the collection that can potentially grow large,

adrien.cassagne@inria.fr



8 S.C. Koduru et al.

template<typename T>
struct Container: public Box<T> { // or Bag<T>

T data;
void update() { /* for each T */

...
}

void process();
};

typedef Container<int> intData;

typedef Container<MyObject> objData;

int main() {
Infinimem<intData> idata;
idata.read("/input/file");
idata.process();

Infinimem<objData> odata;
odata.read("/input/data/");
odata.process();

}

template<typename T>
T Box::fetch(ID);

template<typename T>
T* Box::fetchBatch(ID, count);

template<typename T>
void Box::store(ID, const T*);

template<typename T>
void Box::storeBatch(ID, count);

template<typename T>
T Bag::fetch(ID);

template<typename T>
T* Bag::fetchBatch(ID, count);

template<typename T>
void Bag::store(ID, const T*);

template<typename T>
void Bag::storeBatch(ID, count);

Fig. 2. Programming with InfiniMem: the Box and Bag interfaces are used for fixed
size and variable sized objects; process drives the computation using the user-defined
update() methods and the low-level fetch() and store() API.

as identified by the programmer. Infinimem is the default processing engine;
InfiniMem’s process() function hides the details of I/O and fetches objects as
needed by the update() method, thereby enabling size oblivious programming.

Processing Data: The process() method is the execution engine: it imple-
ments the low-level details of efficiently fetching objects from the disk, applies the
user-defined update() method and efficiently spills the updated objects to disk.
Figure 3 details the default process(). By default, the process()-ing engine
fetches, processes and store-es data in batches of size BATCH SIZE which is
automatically determined from available free memory such that the entire batch
fits and can be processed in memory.

// SZ = SIZEOF_INPUT; BSZ = BATCH_SIZE;

Box<T>::process() { // or Bag<T>

for(i=0; i<SZ; i+=BSZ) {

// fetch a portion of Box<T> or Bag<T>

cache = fetchBatch(ID(i), BSZ);

for(j=0; j<BSZ; j++)

cache[j].update();

}

}

Fig. 3. InfiniMem’s generic batch process()-ing.

While InfiniMem provides
the default implementation for
process() shown in Fig. 3, this
method can be overridden: pro-
grammers can use the accessors
and mutators exposed by Infin-
iMem (Fig. 2) to write their own
processing frameworks. Notice
that InfiniMem natively sup-
ports both sequential/block-
based and random accessors
and mutators, satisfying each
of the requirements formulated earlier. For block-based and random access,
InfiniMem provides the following intuitively named fetch and store APIs:
fetch(), fetchBatch(), store() and storeBatch().
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Illustration of InfiniMem for Graph Processing: We next demonstrate
InfiniMem’s versatility and ease of use by programming graph applications using
three different graph representations. We start with the standard declaration of
a Vertex as seen in Fig. 1b. An alternate definition of Vertex separates the fixed
sized data from variable sized edgelist for IO efficiency, and used in many vertex
centric frameworks [11,12]. Finally, we program GraphChi’s [11] shards.

Figure 4a declares the Graph to be a Bag of vertices, using the declaration
from Fig. 1b. With this declaration, the programmer has identified that the col-
lection of vertices is the potentially large collection that can benefit from size
oblivious programming. The preprocess() phase partitions the input graph
into disjoint intervals of vertices to allow for parallel processing. These examples
use a vertex-centric graph processing approach where the update() method of
Vertex defines the algorithm to process each vertex in the graph. The process()
method of Graph uses the accessors and mutators from Fig. 2 to provide a size
oblivious programming experience to the programmer. Figure 4b declares a Graph
as the composition of a Box of Vertex and a Bag of EdgeLists, where EdgeList
is an implicitly defined list of neighbors. Finally, Fig. 4c uses a similar graph
declaration, with the simple tweak of creating an array of N shard partitions;
a shard imposes additional constraints on the vertices that are in the shard:
vertices are partitioned into intervals such that all vertices with neighbors in a
given vertex interval are all available in the same shard [11], enabling fewer ran-
dom accesses by having all vertices’ neighbors available before processing each
shard. Note that representing shards in InfiniMem is very simple.

void Vertex::update() {
foreach(neighbor n)

distance = f(n.distance);
}

template <typename V>
class Graph {

Bag<V> vertices;

public:
void process();

};

int main() {
Graph<Vertex> g;
g.read("/path/to/graph");
g.preprocess(); //Partition
g.process();

}

(a) Graph for Vertex in Fig-
ure 1b.

void Vertex::update() {
foreach(neighbor n)

distance = f(n.distance);
}

template <typnam V,typnam E>
class Graph {

Box<V> vertices;
Bag<E> edgeLists;

public:
void process();

};

int main() {
Graph<Vertex, EdgeList> g;
g.read("/path/to/graph");
g.preprocess(); //Partition
g.process();

}

(b) Decoupling Vertices
from Edgelists.

void Vertex::update() {
foreach(neighbor n)

distance = f(n.distance);
}

template <typename V,typename E>
class Graph {

Box<V> vertexShard[N];
Bag<E> edgeShard[N];

public:
void processShard(int);

};

int main() {
Graph<Vertex, EdgeList> g;
g.read("/path/to/graph");
g.createShards(N);//Preprocess
for(int i=0; i<N; i++)

g.processShard(i);
}

(c) Using Shard representa-
tion of graphs.

Fig. 4. Variations of graph programming, showcasing the ease and versatility of pro-
gramming with InfiniMem, using its high-level API.
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// SZ = SIZEOF_INPUT;
// BSZ = BATCH_SIZE;
// vb = vertices;

Graph<V>::process() {
for(i=0; i<SZ; i+=BSZ) {
// fetch a batch
vb=fetchBatch(ID(i), BSZ);

for(j=0; j<BSZ; j++)
vb[j].update();

storeBatch(vb, BSZ);
}

}

(a) process()-ing graph
in Figure 1b.

// SZ = SIZEOF_INPUT;
// BSZ = BATCH_SIZE;
// v = vertices;
// e = edgeLists;

Graph<V, E>::process() {
for(i=0; i<SZ; i+=BSZ) {
// fetch a batch
vb=v.fetchBatch(ID(i), BSZ);

// fetch corr. edgelist
eb=e.fetchBatch(ID(i), BSZ);

for(j=0; j<BSZ; j++)
vb[j].update(eb[j]);

storeBatch(vb, BSZ);
}

}

(b) process() for decou-
pled Vertex.

// NS = NUM_SHARDS;
// SS = SIZEOF_SHARD;
// vs = vertexShard;

Graph<V, E>::process() {
for(i=0; i<NS; i++) {
// fetch entire memory shard
mshrd = vs[i].fetchBatch(..,SS);

// fetch sliding shards
for(j=0; j<NS; j++)
sshrd += vs[j].fetchBatch(.,.);

sg = buildSubGraph(mshrd,sshrd);

foreach(v in sg)
v.update();

storeBatch(mshrd, SS);
}

}

(c) Custom process() for
shards.

Fig. 5. Default and custom overrides for process() via low-level InfiniMem API.

Figure 5a illustrates the default process(): objects in the Box or Bag are read
in batches and processed one at a time. For graphs with vertices decoupled from
edgelists, vertices and edgelists are read in batches and processed one vertex at
a time (Fig. 5b); batches are concurrently processed. Figure 5c illustrates custom
shard processing: each memory shard and corresponding sliding shards build the
subgraph in memory; then each vertex in the subgraph is processed [11].

4 InfiniMem ’s I/O Efficient Object Representation

0xFA
+

sizeof(object) * IDn

0xFA
Box<T> Bag<S>

Fig. 6. Indexed disk representation of fixed- and variable-
sized objects.

We now discuss the
I/O efficient repre-
sentation provided by
InfiniMem. Specifically,
we propose an Implic-
itly Indexed represen-
tation for fixed-sized
data (Box); and an
Explicitly Indexed rep-
resentation for variable-
sized data (Bag).

As the number of
objects grows beyond
what can be accom-
modated in main
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memory, the frequency of object I/O to/from disk storage will increase. This
warrants an organization of the disk storage that reduces I/O latency. To
allow an object to be addressed regardless of where it resides, it is assigned
a unique numeric ID from a stream of non-negative, monotonically increas-
ing integers. Figure 6 shows the access mechanism for objects using their IDs:
fixed-sized data is stored at a location determined by its ID and its fixed size:
FILE START + (sizeof(Object) ∗ ID). For variable-sized data, we use a metafile
whose fixed-sized address entries store the offset of the variable-sized data into
the datafile. The Vertex declared in Fig. 4a for example, would only use the
explicitly indexed Bag notation to store data, while the representations in Fig. 4b
and c use both the Box and Bag for the fixed size Vertex and the variable sized
EdgeList respectively. Thus, fixed-sized data can be fetched/stored in a single
logical disk seek and variable-sized data in two logical seeks. This ensures fetch
and store times are nearly constant with InfiniMem and independent of the
number of objects in the file (like random memory access), and enabling:

– Efficient Access for Fixed-Sized Objects: Using the object ID to index into
the datafile, InfiniMem gives fast access to fixed-sized objects in 1 logical seek.

– Efficient Access for Variable-Sized Objects: The metafile enables fast,
random-access access to objects in the datafile, in at most 2 logical seeks.

– Random Access Disk I/O: The indexing mechanism provides an imitation
of random access to both fixed and variable sized objects on disk.

– Sequential/Batch Disk I/O: To read n consecutive objects, we seek to the
start of the first object. We then read sizeof(obj)*n bytes and up to the
end of the last object in the sequence for fixed- and variable-sized objects,
respectively.

– Concurrent I/O: For parallel processing, different objects in the datafile must
be concurrently and safely accessed. Given the large number of objects, indi-
vidual locks for each object would be impractical. Instead, InfiniMem provides
locks for groups of objects: to decrease lock conflicts, we group non-contiguous
objects using modulo ID modulo a MAX CONCURRENCY parameter set at 25.

5 Evaluation

We now evaluate the programmability and performance of InfiniMem. This eval-
uation is based upon three class of applications: probabilistic web analytics,
graph/mesh generation, and graph processing. We also study the scalability of
size oblivious applications written using InfiniMem with degree of parallelism
and input sizes. We programmed size oblivious versions of several applications
using InfiniMem and are listed in Table 1. We begin with data analytics bench-
marks: frequency counting using arrays, membership query using hash tables, and
probabilistic membership query using Bloom filters. Then, in addition to mesh
generation, in this evaluation, we use a variety of graph processing algorithms
from diverse domains like graph mining, machine learning, etc. The Connected
Components (CC) algorithm finds nodes in a graph that are connected to each
other by at least one path, with applications in graph theory. Graph Coloring
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Table 1. Between 6 and 9 additional lines of code are needed to make these applications
size oblivious. Graph processing uses decoupled version (Fig. 4b).

Application Additional LoC Application Additional LoC

Probabilistic Web Analytics Graph Processing

Freq. Counting 2 + 3 + 3 = 8 Graph Coloring

Member Query 2 + 3 + 3 = 8 PageRank

Bloom Filter 2 + 4 + 3 = 9 SSSP 1 + 3 + 2 = 6

Graph/Mesh Generation Num Paths

Mesh Generation 2 + 2 + 2 = 6 Conn. Components

(GC) assigns a color to a vertex such that it is distinct from those of all its
neighboring vertices with applications in register allocation etc. In a web graph,
PageRank (PR) [14] iteratively ranks a page based on the ranks of pages with
inbound links to the page and is used to rank web search results. NumPaths (NP)
counts the number of paths between a source and other vertices. From a source
node in a graph, Single Source Shortest Path (SSSP) finds the shortest path to
all other nodes in the graph with applications in logistics and transportation.

5.1 Programmability

Writing size oblivious programs with InfiniMem is simple. The programmer
needs to only: (a) initialize the InfiniMem library, (b) identify the large collec-
tions and Box or Bag them as necessary, and (c) use the default process()-ing
engine or provide a custom engine. Table 1 quantifies the ease of programming
with InfiniMem by listing the number of additional lines of code for these tasks
to make the program size oblivious using the default processing engine. At most
9 lines of code are needed in this case and InfiniMem does all the heavy lifting
with about 700 lines for the I/O subsystem, and about 900 lines for the run-
time, all of which hides the complexity of making data structures disk-resident
from the user. Even programming the shard processing framework was rela-
tively easy: about 100 lines for simplistic shard generation and another 200 lines
for rest of the processing including loading memory and corresponding sliding
shards, building the subgraph in memory and processing the subgraph; rest of
the complexity of handling the I/O etc., are handled by InfiniMem.

5.2 Performance Table 2. Inputs used in this evaluation.
Input Graph |V | |E| Size

Pokec 1,632,804 61,245,128 497M

Live Journal 4,847,571 68,993,773 1.2G

Orkut-2007 3,072,627 223,534,301 3.2G

Delicious-UI 33,778,221 151,772,443 4.2G

RMAT-536-67 67,108,864 536,870,912 8.8G

RMAT-805-134 134,217,728 805,306,368 14G

We now present the runtime perfor-
mance of applications programmed
with InfiniMem. We evaluated Infin-
iMem on a Dell Inspiron machine
with 8 cores and 8 GB RAM with
a commodity 500 GB, 7200RPM
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SATA 3.0 Hitachi HUA722050CLA330 hard drive. For consistency, the disk cache
is fully flushed before each run.
Size Oblivious Graph Processing: We begin with the evaluation of graph
processing applications using input graph datasets with varying number of
vertices and edges, listed in Table 2. Orkut, Pokec, and LiveJournal graphs are
directed graphs representing friend relationships. Vertices in the Amazon graph
represent products, while edges represent purchases. The largest input in this
evaluation is rmat-805-134 at 14 GB on disk, 805M edges and 134M vertices.
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Fig. 7. Percentage(%) of IO and execu-
tion time for decoupled over coupled rep-
resentations for various applications on the
‘Delicious-UI’ input.

We first discuss the benefits
of decoupling edges from vertices.
When vertex data and edgelists are
in the same data structure, line 22
in Algorithm 1 requires fetching the
edgelists for the vertices even though
they are not used in this phase of the
computation. Decoupling the edge-
lists from vertex data has the ben-
efit of avoiding wasteful I/O as seen
in Table 3. The very large decrease in
running time is due to the extremely
wasteful I/O that reads the variable
sized edgelists along with the ver-
tex data even though only the vertex
data is needed.

Figure 7 shows the I/O breakdowns for various benchmarks on the moder-
ately sized Delicious-UI input. While the programming effort with InfiniMem
is already minimal, switching between representations for the same program
can be easier too: with as little as a single change to data structure definition
(Fig. 4a–b), the programmer can evaluate different representations.

Tables 4 and 5 show the frequencies and percentage of total execution time
spent in various I/O operations for processing the decoupled graph representation
with InfiniMem, as illustrated in Fig. 4b. Observe that the number of batched
vertex reads and writes is the same in Table 4 since both vertices and edgelists are

Table 3. Decoupling vertices and edgelists avoids wasteful I/O (runntime time shown
is in seconds). ‘Co’ and ‘DeCo’ refer to coupled and decoupled respectively.

Input Graph PageRank Conn Comp Numpaths Graph Coloring SSSP

Co DeCo Co DeCo Co DeCo Co DeCo Co DeCo

Pokec 2,228 172 352 60 37 8 277 28 48 7

Live journal 8,975 409 1,316 122 106 14 602 58 133 70

Orkut 3,323 81 3,750 277 459 11 3,046 140 660 154

Delicious-UI 32,743 1,484 15,404 904 1,112 67 9,524 365 1,453 65

rmat-536-67 23,588 3,233 12,118 2,545 1,499 861 5,783 1,167 1,853 584

rmat-805-134 25,698 3,391 >8h 3,380 3,069 1,482 11,332 2,071 >8h 2,882
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Table 4. Frequencies of operations for various inputs for PageRank.

I/O Operation LiveJournal Orkut Delicious-UI rmat-536-67 rmat-805-134

Vertex batched reads 7,891 421 40,578 12,481 24,052

Edge batched reads 7,891 421 40,578 12,481 24,052

Vertex individual reads 865e+6 188e+6 2.8e+9 1.8e+9 2.5e+9

Vertex batched writes 7,883 413 40,570 12,473 24,044

Table 5. Percentage of time for I/O operations for various inputs for PageRank.

I/O Operation LiveJournal Orkut Delicious-UI rmat-536-67 rmat-805-134

Vertex batched reads 0.05% 0.02% 0.31% 0.12% 0.13%

Edge batched reads 8.48% 2.75% 11.25% 7.75% 9.72%

Vertex Individual Reads 54.80% 71.59% 76.96% 86.47% 81.73%

Vertex batched writes 0.12% 0.03% 0.37% 0.04% 0.10%

Total IO 63.45% 74.39% 88.89% 94.38% 91.68%

read together in batches. There are no individual vertex writes since InfiniMem
only writes vertices in batches. Moreover, the number of batched vertex writes
is less than the reads since we write only updated vertices and as the algorithm
converges, in some batches, there are no updates. Observe in Table 5 that as
described earlier, the maximum time is spent in random vertex reads.

Sharding with InfiniMem: In the rest of this discussion, we always use the
decoupled versions of Vertex and EdgeLists. We now compare various versions
of graph processing using InfiniMem. Table 6 compares the performance of the
two simple graph processing frameworks we built on top of InfiniMem with
that of GraphChi-provided implementations in their 8 thread configuration.
InfiniShard refers to the shard processing framework based on InfiniMem. In
general, the slowdown observed with InfiniMem is due to the large number
of random reads generated, which is O(|E|). For PageRank with Orkut, how-
ever, we see speedup for the following reason: as the iterations progress, the set
of changed vertices becomes considerably small: ∼50. So, the number of ran-
dom reads generated also goes down considerably, speeding up PageRank on the
Orkut input. With Connected Components, our InfiniMem runs slower primar-
ily because the GraphChi converges in less than half as many iterations on most
inputs. Table 6 also presents the data for PageRank that processes shards with
our InfiniMem library as compared to the very fine-tuned GraphChi library. The
speedup observed in Table 6 from InfiniMem to InfiniShard is from eliminating
random reads enabled by the shard format. Notice that even with our quick,
unoptimized ∼350 line implementation of sharding, the average slowdown we see
is only 18.7 % for PageRank and 22.7 % for Connected Components compared
to the highly tuned and hand-optimized GraphChi implementation. Therefore,
we have shown that InfiniMem can be used to easily and quickly provide a size
oblivious programming experience along with I/O efficiency for quickly evaluat-
ing various representations of the same data.
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Table 6. InfiniMem (decoupled) vs. InfiniShard ; Speedups over GraphChi.

Input Graph PageRank time (sec) Conn. Comp. time (sec)

InfiniMem InfiniShard GraphChi InfiniMem InfiniShard GraphChi

(speedup) (speedup) (speedup) (speedup)

Pokec 172 (0.72) 121 (1.02) 124 60 (0.40) 26 (0.92) 24

LiveJournal 409 (0.90) 488 (0.76) 371 122 (0.49) 80 (0.75) 60

Orkut 81 (1.91) 190 (0.82) 156 277 (0.44) 142 (0.87) 123

Delicious-UI 1,484 (0.43) 730 (0.89) 652 904 (0.17) 191 (0.78) 149

rmat-536-67 3,233 (0.36) 1,637 (0.70) 1,146 2,545 (0.21) 746 (0.71) 529

rmat-805-134 3,391 (0.44) 2,162 (0.69) 1,492 3,380 (0.30) 1,662 (0.61) 1,016

Size-Oblivious Programming of Probabilistic Apps: Here, we present the
throughput numbers for the probabilistic applications in Table 7. We evaluated
these applications by generating uniformly random numeric input. Frequency
counting is evaluated by counting frequencies of random inserts while member-
ship query and Bloom filter are evaluated using uniformly generated random
queries on the previously generated uniformly random input. Jenkins hashes are
used in Bloom filter. Bloom filter achieves about half the throughput of Fre-
quency Counting since Bloom filter generates twice as many writes.

Table 7. QPS for the probabilistic apps.

Application Throughput (qps)

Frequency counting 635,031
Membership query 446,536
Bloom filter 369,726

We also experimented with
querying. We searched for entries
using the Orkut input file (3.2 GB
on disk) as an input file. Using a
naive, sequential scan and search
took 67 s. Using InfiniMem with
1 thread took 15 s, while using
4 threads took 5 s for the same
naive implementation. The highly optimized GNU Regular Expressions utility
took an average of 4.5 s for the same search. This shows that in addition to ease of
programming, InfiniMem performs well even with very simple implementations.

5.3 Scalability

Next, we present data to show that InfiniMem scales with increasing parallelism.
Figure 8a shows the total running times for various applications on the 14 GB
rmat-805-134 input: for most applications InfiniMem scales well up to 8 threads.

However, given that the performance of applications is determined by the
data representation and the number of random accesses that result in disk I/O,
we want to study how well InfiniMem scales with increasing input size. To objec-
tively study the scalability with increasing number of edges with fixed vertices
and controlling for variations in distribution of vertex degrees and other input
graph characteristics, we perform a controlled experiment where we resort to syn-
thetic inputs with 4 M vertices and 40 M, 80 M, 120 M, 160 M and 200 M edges.
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Figure 8c shows the time for each of the for these inputs. We see that with
increasing parallelism, InfiniMem scales well for increasing number of edges in
the graph. This shows that InfiniMem effectively manages the limited memory
resource by orchestrating seamless offloading to disk as required by the applica-
tion. The performance on real-world graphs is determined by specific character-
istics of the graph like distribution of degrees of the vertices etc. But for a graph
of a specified size, Fig. 8c can be viewed as a practical upper bound.

Figure 8b illustrates the scalability achievable with programming with Infin-
iMem with parallelism for the Frequency counting, Exact membership query and
Probabilistic membership query using Bloom filters. Notice that these applica-
tions scale well with increasing number of threads as well as increasing input
sizes. The execution time for Bloom filter is significantly larger since Bloom fil-
ter generates more random writes, depending on the number of hash functions
utilized by the filter; our implementation uses two independent hashes.
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Fig. 8. Scalability of InfiniMem with parallelism and input size.

Figure 8d illustrates that very large graph generation is feasible with
InfiniMem by showing the generation of a Mesh with 7.5 M vertices and 300M
edges which takes about 40 min (2400 s). We observe that up to 5 M vertices and
200 M edges, the time for generation increases nearly linearly with the number of
edges generated after which the generation begins to slow down. This slowdown
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is not due to the inherent complexity of generating larger graphs: the number
of type of disk operations needed to add edges is independent of the size of the
graph – edge addition entails adding the vertex as the neighbor’s neighbor and
accessing the desired data in InfiniMem requires a maximum of 2 logical seeks.
The reason for the observed slowdown is as follows: modifications of variable
sized data structures in InfiniMem are appended to the datafile on disk; this
data file, therefore, grows very large over time and the disk caching mechanisms
begin to get less effective. Compare this with the fact that GTGraph crashed
immediately for a graph with just 1 M vertices and 400 M edges.

5.4 Integration with Distributed Shared Memory (DSM)
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Fig. 9. Extra overhead of RocksDB over
InfiniMem in our DSM.

Next we demonstrate the applicabil-
ity of Size Oblivious Programming
in the context of Distributed Shared
Memory. While clusters are easy to
scale out, multi-tenant environments
can restrict memory available to user
processes or certain inputs may not
fit in the distributed memory. In
either case, it would be beneficial
to have the programs run success-
fully without rewrites. We applied
the InfiniMem framework to seam-
lessly make our object based DSM [9]
size oblivious. When the data allocated to the node does not fit in available mem-
ory, the DSM system spills data to local disk and fetches it back to local memory
as demanded by the application. When running distributed software speculation
with 75 % of the input in memory and the rest spilt to disk, InfiniMem has much
lower overhead as compared to an alternative solution based upon RocksDB [7]:
Fig. 9 shows that RocksDB based programs run up to ∼20.5 % slower than using
InfiniMem. Compared to when all the data fits in memory, InfiniMem introduces
a small overhead of 5 % over our baseline DSM, i.e. at this small cost, InfiniMem
makes our DSM size oblivious.

6 Related Work

The closest file organization to that used by InfiniMem and illustrated in Fig. 6
is the B+ tree representation used in database systems. The primary differences
in our design are the following: (1) InfiniMem uses a flat organization, with at
most one level index for variable sized data. (2) InfiniMem provides O(1) time
I/O operations for random access while the B+ trees require O(log n) time.
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Out-of-Core Computations– In this paper, we enable applications with very
large input data sets to efficiently run on a single multicore machine, with mini-
mal programming effort. The design of the InfiniMem transparently enables large
datasets become disk-resident while common out-of-core algorithms [5,10,20]
explicitly do this. As demonstrated with shards, it should be easy to program
these techniques with InfiniMem.

Processing on a Single Machine– Traditional approaches to large-scale data
processing on a single machine involve using machines with very large amounts
of memory, while InfiniMem does not have that limitation. Examples include
Ligra [16], Galois [15], BGL [18], MTGL [3], Spark [21] etc. FlashGraph [6] is a
semi-external memory graph processing framework and requires enough memory
to hold all the edgelists; InfiniMem has no such memory requirements.

GraphChi [11] recently proposed the Parallel Sliding Window model based
on sharded inputs. Shard format enables a complete subgraph to be loaded in
memory, thus avoiding random accesses. GraphChi is designed for and works
very well with algorithms that depend on static scheduling. InfiniMem is general-
purpose and recognizes the need for sequential/batched and random input for
fixed and variable sized data and provides simple APIs for rapid prototyping.

7 Conclusion

We have presented the InfiniMem system for enabling size oblivious program-
ming. The techniques developed in this paper are incorporated in the versatile
general purpose InfiniMem library. In addition to various general purpose pro-
grams, we also built two more graph processing frameworks on top of InfiniMem:
(1) with a simple data format and (2) to process GraphChi-style shards. We have
shown that InfiniMem performance scales well with parallelism, increasing input
size and highlight the necessity of concurrent I/O design in a parallel set up.
Our experiments show that InfiniMem can successfully generate a graph with
7.5 million vertices and 300 million edges (4.5 GB on disk) in 40 min and it per-
forms the PageRank computation on an RMAT graph with 134M vertices and
805M edges (14 GB on disk) an 8-core machine in about 54 min.
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Abstract. DISC is a newly proposed parallel programming paradigm
that models many classes of iterative scientific applications through spec-
ification of a domain and interactions among domain elements. Accom-
panied with an associated runtime, it hides the details of inter-process
communication and work partitioning (including partitioning in the pres-
ence of heterogeneous processing elements) from the programmers. In
this paper, we show how these abstractions, particularly the concepts
of compute-function and computation-space objects, can be also used to
leverage low-overhead fault-tolerance support. While computation-space
objects enable automated application level checkpointing, replicated exe-
cution of compute-functions helps detect soft errors with low overheads.
Experimental results show the effectiveness of the proposed solutions.

1 Introduction

High performance computing is undergoing a significant transformation in the
sense that resilience is becoming as equally important as performance. Comput-
ing power is constantly being increased with more number of cores, hence with
more parallelism. This trend results in a significant decrease in Mean Time To
Failure (MTTF) rates in HPC systems due to the large number of components.
At the same time, parallel machines are becoming more memory and I/O bound.
These two trends together are implying that resilience is not only a major prob-
lem, but also the commonly used solutions for fault-tolerance, mostly based on
system-level checkpointing, are becoming too expensive. The total cost of fault-
tolerance support with checkpointing, which is the sum of the costs of taking
checkpoints (which increases as checkpointing frequency increases), the net time
spent on recomputation (which increases as checkpointing frequency decreases),
and the time spent on restart after a failure, can dominate the actual execution
time. An analysis of a 100,000 core job, where each node has a MTTF of 5 years,
indicates that these three costs can add up to 65 % of the total execution time, i.e.
only 35 % of the time will be productively used [10]. Technology trends indicate
that this situation will only get worse in the near future in the sense that MTTF
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values will become so small that the time required to complete a checkpoint can
exceed the MTTF making the existing approach completely inapplicable [4].

Moreover, in recent years, there is a growing concern about a new class of
failures, namely, soft errors. These errors involve bit flips in either processing
cores, the memory, or the disk. Although radiation has been considered the
main cause of such random bit flips [20], use of smaller and smaller transistors
and efforts to improve power-efficiency in hardware are now attributed as the
cause of these faults occurring more frequently [25]. Many recent publications
have summarized the observed frequency of these faults [10], for example, double
bit flips (which cannot be corrected by Error Correcting Codes) occur daily at
a national lab’s Cray XT5, and similary, such errors were frequent in BG/L’s
unprotected L1 cache. Although the traditional solutions to deal with soft errors
have been implemented at the hardware level, clearly there is a need for software
solutions to this problem.

These developments are imposing new challenges for application programmers.
On one hand, they need to be able to manually implement efficient application-
level checkpointing and recovery. Even more challenging for them is to implement
techniques for dealing with soft errors. One pressing question is whether program-
ming models can help automate fault-tolerant solutions.

In this paper, we address this question in the context of the DISC program-
ming model recently developed by the authors. DISC [15] is a programming model
and associated runtime system based on domain and domain element interaction
concepts and particularly targets iterative scientific applications with structured
grids, unstructured grids and N-body simulation patterns. While these applica-
tions have different communication patterns, they are similar in an important way,
i.e., they have an underlying domain, and most of the computation occurs due
to the interactions among domain elements. Our programming model supports
an API by which the domain, interaction among domain elements, and functions
for updating any attributes of these domain elements can be explicitly specified.
Starting from this model, inter-process partitioning of the work and the commu-
nication is handled automatically by the runtime system. Our previous work has
shown how the system is almost as efficient as MPI for homogeneous clusters, while
allowing repartitioning of work for dealing with heterogenous configurations.

In this paper, we examine another important application of this programming
model. We extended DISC model so that it also leverages low-overhead fault-
tolerance support. We show that the abstractions that DISC model provides to
hide the details of process communication and work partitioning/re-partitioning
help also identify the main execution state and the functions that are the most
susceptible to soft errors. Exposure of such vital program state and instructions
is utilized in order to implement two fault-tolerance mechanisms within the
runtime. First, with the concept of computation-space objects, DISC API makes
it feasible to support automated, yet efficient, application-level checkpointing.
This as a result can reduce checkpointing overheads significantly. Second, with
the concept of compute-functions, DISC runtime is capable of detecting soft
errors using a partial replication strategy. Here, only the set of instructions most
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likely to corrupt the main execution state is executed with redundancy and the
results are compared efficiently with computed checksums.

To show the effectiveness of our approach, we have developed two stencil com-
putations, one unstructured grid based computation, and a molecular dynamics
mini-application (MiniMD, a representative of a full-scale molecular dynamics
application). We first compare the cost of checkpointing in our model, against
system-level checkpointing in MPI (which is the only automated solution avail-
able today). Next, we compare the performance of DISC implementations with
replication support to normal execution without any redundancy and show how
further improvements in replication overheads can be achieved.

2 Related Work

Fault-tolerance for high performance computing against hard errors has been
extensively studied. Much of this research specifically targets MPI [1,3,6,12,14,
17,26]. Recent efforts on optimizing the process include combination of coor-
dinated and uncoordinated checkpointing [23] and compression for reducing
the overheads of checkpointing [13]. Another approach is algorithm-level fault-
tolerance [2,5,7,19], where properties of an algorithm are exploited (typically to
build-in redundancy). While this approach can overcome many of the overheads
of general checkpointing, it has two key limitations: (1) as the name suggests,
the solution is very specific to a particular algorithm, and (2) the fault-tolerant
algorithm needs to be implemented by the programmer manually while develop-
ing the application. As for soft errors, the general detection approach is through
redundant execution. This redundancy can be achieved at various levels. For
instance, in [18], each computing node in execution is paired with a buddy node
that performs the same work. Paired nodes checkpoint and exchange their local
state periodically and the resulting computations in paired nodes are cross com-
pared through their respective checkpoints. [10] provides a new MPI implemen-
tation that creates replica MPI tasks and performs online verification during
communication only on MPI messages. Studies in [22,24] execute all dynamic
instructions in a program twice by redundant threads and compare the first and
second result. If there is a mismatch, both threads restart execution from the
faulty instruction. There have been some efforts to reduce the overheads associ-
ated with redundancy; [27] exploits high-level program information at compile
time to minimize data communication between redundant threads, whereas [21]
explores the partial redundant threading spectrum, in which only a dynamic sub-
set of instructions is duplicated to near single threaded execution performance
at the expense of limited fault coverage. [9] combines redundant threading with
symptom-based detectors by quantifying the likelihood that a soft-error impact-
ing an instruction creates a symptom such as branch mispredicts or cache misses.
Resultingly, it only duplicates the instructions that can not generate any such
symptoms. Although the proposed solutions achieve significant reductions in
associated overheads, none of them attempts to implement redundancy at the
programming model level. As we show in next sections, proper abstractions at
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programming model level can expose the most vital program state and instruc-
tions and can help automate redundant execution with small overheads.

3 DISC Programming Model

In this section, we present the key concepts of DISC programming model as a
background for next section which explains how its abstractions leverage low-
overhead fault-tolerance support.

3.1 Domain and Subdomain

DISC model treats the entire input space of an application as a multidimensional
domain, which consists of domain elements. At the beginning of execution, pro-
grammers provide information about the domain. This information is used to
initialize the runtime system and it includes (1) whether the domain represents a
structured grid, an unstructured grid or a particle set, (2) number of dimensions
and boundary values for each dimension and (3) the type of interaction among
domain elements. Once this information is passed to the runtime, it decomposes
the entire domain into non-overlapping rectilinear regions referred as subdomains
and assigns each subdomain to a processing unit. Since subdomain decomposi-
tion and assignment is performed by the runtime, it is able to hold a high-level
view of the domain.

As a concrete example, consider a molecular dynamics application such as
MiniMD which simulates the motion of a large number of atoms in three-
dimensional space throughout a predefined number of time-steps. When imple-
mented using DISC model, the three-dimensional space is treated as an N-body
simulation domain and each atom in the simulation corresponds to a domain ele-
ment. DISC runtime for MiniMD is initialized with the following lines of code;

// provide domain information and initialize DISC runtime
DomainProps props;
props.set ndims(3); // number of dimensions
props.set min bounds(0, 0, 0); // x, y, z min−bounds
props.set max bounds(XMAX, YMAX, ZMAX); // x, y, z max−bounds
NBodyDomain domain(props);

3.2 Attributes

Each domain element in a DISC domain has associated coordinate values. In
some domain types such as structured grids, coordinate values of domain ele-
ments might stay fixed during the entire execution and can be inferred directly
from the boundary values of assigned subdomains. However, for other domain
types, they might be updated periodically and their initial values should be
explicitly provided by programmers. In addition to coordinates, each domain
element can also be associated with a set of attributes. For instance, each atom
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in MiniMD has three additional attributes that store velocity values of the cor-
responding atom on x, y and z axis. The key advantage of DISC model is its
ability to perform data exchange operations based on the interaction pattern
automatically and to re-partition the domain on the fly in presence of hetero-
geneity by migrating domain elements within the domain. To fulfill both of these
promises, programmers register coordinates and attributes of domain elements
within each subdomain via DISC API, so that the runtime is informed of the
data structures that maintain associated information on each domain element.
Using the same example, the code snippet below shows how attributes of domain
elements in MiniMD are passed to the runtime through DISC objects called Dou-
bleAttribute;

DoubleAttribute velocities[3]; // x, y, z velocities
/∗ fill in attribute object velocities with initial values of x, y, z velocities ∗/
domain.register attributes(&velocities);

3.3 Compute-Function and Computation-Space

In DISC model, each processing unit performs computations for the assigned por-
tion of the domain. In other words, the domain elements that a processing unit
processes lie within the boundaries of the subdomain that has been assigned to it
by the runtime. DISC requires programmers to express underlying computation,
which typically comprises of calculating new values for attributes associated with
domain elements, in a single or a set of functions referred as compute-functions.
Compute-functions generally host the portion of code on which most of the exe-
cution time is spent. Programmers specify these functions by passing function
pointers to the runtime. At each iteration during a program’s execution, the
runtime invokes these functions in the order that they are specified.

For each compute-function, programmers explicitly declare one or more
objects called computation-space. A computation-space object coupled with a
compute-function stores the results of computation carried out by that function.
It generally contains an entry for each domain element in the corresponding
subdomain and programmers perform any updates related to the domain ele-
ments directly on the computation-space object itself. This way, the runtime is
aware of what additional data structures along with coordinates and attributes
describe the domain elements in a subdomain completely. This abstraction lever-
ages automated migration of domain elements within the domain if needed. Note
that mapping a value in computation-space to the corresponding domain element
can be inferred from domain type in most cases. Otherwise, programmers can
pass additional functions to the runtime that dictate this mapping.

In MiniMD, atoms interact with other atoms in a given radius and this
interaction results in recomputation of coordinates and velocities of each atom at
every time-step. The code snippet below reflects this by defining six computation-
space objects (three for new coordinates and three for new velocities). These
objects are coupled with the compute-function minimd kernel and passed to the
runtime via DISC API;
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DoubleAttribute computation space[6]; // new x, y, z coords and velocities
domain.add compute function(minimd kernel, &computation space);

3.4 Interaction Between Domain Elements

As indicated before, a key advantage of DISC model is that the runtime handles
communication automatically based on the type of interaction between domain
elements. Currently, DISC model supports three types of communication; based
on nearest neighbor interactions in stencil kernels, based on radius-based interac-
tions in molecular dynamics applications and based on a list provided explicitly
by programmers that dictates pair-wise sinteractions. Further details for runtime
communication generation can be found in [15].

4 Fault-Tolerance Support

We now describe two fault-tolerance approaches that have been implemented for
the applications developed using DISC model.

(a) Structured Grid (b) Particle Set

Fig. 1. Sample checkpoint files for a 2D stencil (a) and 3D molecular dynamics appli-
cation (b). Both files consist of two parts as meta-data and computation-space objects.

4.1 Checkpointing

DISC model automates application-level checkpointing, alleviating the need for
expensive system-level checkpointing that is normally used for programming
models like MPI. Like any checkpointing-based approach, we assume the exis-
tence of a persistent storage where the checkpoint files can be written into.
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Two important questions for application-level checkpointing are: (1) when
should checkpoints be taken, and (2) what data structures will be needed to
restart the computation in case of a failure, and therefore, need to be check-
pointed. It turns out that the DISC model simplifies these decisions. Particu-
larly, the end of an iteration of the time-step loop (after data exchange and
main computation have been completed by the runtime system) is a natural
point for taking the checkpoint. Compared to system-level checkpointing, we
get a coordinated checkpoint (in the sense that there is no need for message log-
ging for recovery), while not requiring any time-consuming coordination between
processes.

Now, let us return to the question of which data structures need to be check-
pointed. DISC model encapsulates the computational progress made on each
domain element in objects that we introduced in previous section; attribute and
computation-space objects. At each iteration, attribute objects store the cur-
rent information associated with domain elements, whereas computation-space
objects capture the updates on them performed through compute-functions. As
a concrete example, if we consider MiniMD, after each time-step, the attributes
and the computation-space objects contain previous and updated coordinate and
velocity values of each atom. The collection of attribute and computation-space
objects represent the main execution state of applications at any given time. This
collection along with the high-level information such as initial domain decompo-
sition (boundaries of each subdomain) can be used to recover the state of DISC
runtime and the underlying application completely.

If an application has multiple compute-functions, not all computation-space
objects may be live at the end of an iteration of the time-step loop, i.e., cer-
tain computation-space objects could have been consumed already. Moreover,
some of the attribute objects might entirely depend on and be calculated from
a small set of remaining attributes without incurring a significant recomputa-
tion cost. This implies that during failure recovery not all of the attributes and
computation-space objects are needed to recreate the execution state of domain
elements. Some of them can be ignored by the checkpointing mechanism to save
bandwidth, hence time, and also storage space. While compiler analysis can pro-
vide this information, our model currently asks the programmers to explicitly
annotate this information by passing additional arguments during instantiation
of these objects. This way, programmers can explore the tradeoff space in check-
pointing the entire domain state vs. recalculation of a small portion from saved
data structures. Note that any other application state besides the ones associated
directly with domain elements should be explicitly checkpointed by program-
mers. However, considering the computation patterns that DISC model targets,
such additional state is limited and recomputed efficiently from checkpointed
attribute and computation-space objects.

Checkpointing frequency as well as other important information like the file
path where the checkpoint files will reside can be set via DISC API. We insert
some meta-data information to the head of checkpoint files including the current
iteration number, and also the boundaries of the subdomain that attribute and
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computation-space objects represent. This meta-data is utilized to reconstruct
the application state during recovery. Figures 1(a) and (b) illustrate the content
of sample checkpoint files, which are taken at the 20th iteration of a 2D stencil
grid computation and a 3D molecular dynamics application. In both (a) and (b),
only the computation-space objects are saved.

Recovery. During recovery from a failure, DISC model is able to restart the
computation both with the same or a fewer number of processes, unlike the
current checkpointing approaches in MPI, which can only allow restart with the
same number of processes. For instance, assuming that there are N processing
units in the system before the failure, if the computation is restarted with a fewer
number of nodes, say N − 1, the domain is decomposed into N − 1 subdomains.

Whether with the same or fewer number of nodes, the most critical operation
for recovery is to recreate the computational state of a subdomain from existing
checkpoint files. If a processing unit has been assigned the same subdomain as
before, it will be sufficient to access that subdomain’s checkpoint file and load its
content into computation-space object in entirety. However, after decomposition,
a change in subdomain boundaries is very likely. Therefore, each processing
unit may need to read several checkpoint files. In such cases, the metadata
information mentioned previously is utilized to filter down the checkpoint files
either completely or at least partially, i.e. we check if there is an intersection
between processing unit’s newly assigned subdomain and the boundaries of the
subdomain that the checkpointed computation-space object represents.

Once computation-space objects for the new domain have been reconstructed
from the checkpoint files, application can restart from the iteration in which the
last checkpoint was taken.

4.2 Replication

Soft error detection has drawn significant attention from community in recent
years. Such error detection could be from a variety of sources including hard-
ware or software error detection codes such as ECC, symptom-based error detec-
tors [11] and application-level assertions. One approach to detect such errors is to
create two or more independent threads of execution and compare the execution
state of different threads. This work has been done at multiple levels – repli-
cation at process level [10] or replication at the instruction level [9]. However,
trivial replication of the entire program execution and comparison of result-
ing computation might incur significant overheads. We claim that concepts of
compute-functions and computation-space objects in DISC model can be used
to implement a partial replication strategy to reduce associated overheads sub-
stantially.

As emphasized before, compute-functions contain the lines of code to which
majority of program execution time is devoted. A soft error in combinatorial
logic components including register values, ALUs and pipeline latches is most
likely to occur when processing cores carry out the instructions expressed in
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compute-functions. Since computations, and hence updates on domain elements,
defined in compute-functions are directly reflected on the computation-space
objects coupled with them, a soft error occurring during the execution of these
functions eventually corrupts the computation-space objects, either directly and
transitively. This observation suggests that soft errors can be efficiently detected
by replication of compute-functions only and cross-comparison of their associated
computation-space objects after each iteration. Note that replication mechanism
described next assumes that processor components other than the memory are
susceptible to soft errors. A produced value is assumed to be resilient once it
leaves the processor and is stored back in memory. Control flow variables and
memory references are protected by other means such as invariant assertions
against the possibility of causing fatal errors such as segmentation faults. Hence,
we mainly protect execution against soft errors on calculated values that are
used to update computation-space objects.

Fig. 2. Flow of execution at each iteration when replication strategy is in use.

Replication Mechanism. Figure 2 demonstrates the execution flow at each
iteration when this partial replication strategy is implemented in the DISC
runtime. After data exchange operations are performed, the runtime splits the
main execution thread into two as original and replica. Each thread is asso-
ciated with its own computation-space object, but they both invoke the same
compute-function in parallel. During compute-function execution, both original
and replica threads use the same set of input space, i.e. attributes of domain ele-
ments and any global data structures in application code. Sharing the same mem-
ory space, except the computation-space objects, leads to a significant reduction
in overall memory footprint of replication strategy.

Currently, the replication strategy in DISC model makes the assumption that
compute-functions provided by the programmer are side-effect free, meaning that
they do not modify any global data structures. This is mainly to avoid possi-
ble race conditions. Note that one can synchronize original and replica threads
by pragma directives with respect to the threading library used by the DISC
runtime.

Checksum Calculation. After both threads finish executing the compute-
function, they calculate a checksum value over their own computation-space
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object. We employ integer module operation as the checksum function. Regard-
less of their data type, we treat the bit representation of values in computation-
space objects as an integer and accumulate them into a single sum [16]. After
checksum calculation, the two threads merge and checksum values are compared
by the main thread. If the values match, application advances to the next itera-
tion. Otherwise, DISC runtime ceases the execution and informs the programmer
that a soft error has been detected and a recovery procedure should be initiated.

Improvements for Cache Utilization. The initial replication scheme calcu-
lates checksums over computation-space objects once individual threads finish
execution of compute-functions. Although checksum calculation can be per-
formed quite efficiently, especially in architectures with vector units, accessing
the entire computation-space objects once again leads to a large number of cache
misses, and hence to high overheads, especially when computation-space objects
are large. To remedy this, we present an improvement on top of the plain repli-
cation scheme presented previously. Instead of performing it in a separate step,
we incorporate checksum calculation directly into compute-functions. Particu-
larly, pure compute-functions provided by programmers are modified in a way
that entries in a computation-space object contribute to the checksum on the fly,
right after they are assigned a value. On the fly checksum calculation increases
temporal locality of overall replication strategy and helps us avoid the data
access costs incurred by an isolated checksum calculation phase.

Another source of overhead is the need to create a second copy of computation-
space objects. Having additional computation-space objects for replica threads
both increases the total memory footprint and at the same time diminishes over-
all cache utilization. Thus, as a second improvement, we avoid creating replica
computation-space objects by modifying compute-functions further. Particularly,
assignments to computation-space objects in replica thread are replaced by
instructions that accumulate the assigned variables to the checksum values
instead. Having no replica computation-space object in replica threads results in
further improvements in data locality. In the next section, we demonstrate how
these two optimizations affect performance of replication strategy, especially for
applications with large output space.

5 Experiments

In this section, we present results from a number of experiments we conducted to
evaluate the fault-tolerance solutions that we implemented within DISC model.
Our evaluation is based on four applications. We chose one molecular dynamics
application (MiniMD), one application involving an unstructured grid (Euler),
and two smaller kernels involving stencil computations (Jacobi and Sobel).

5.1 Checkpointing

One of the key advantages of DISC model is the support for automated application-
level checkpointing. We now show how the cost of checkpointing with our approach
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Fig. 3. Normal execution and checkpointing times of MPI and DISC implementations
of four applications with varying number of nodes.

compares with the only automated solution currently available with MPI, which
is system-level checkpointing. Moreover, we also examine how the total execution
time of our system and MPI versions compare, when checkpointing overheads are
included.

For checkpointing support in MPI implementations, we used MPICH2-BLCR,
which is one of the most popular system-level checkpoint/restart libraries. MPI
versions of all evaluated applications have been written by ourselves, except
MiniMD which was obtained from the Mantevo suite1. Experiments in this
section are performed on a cluster where each node has two quad-core 2.53 GHz
Intel(R) Xeon(R) processors, with 12 GB RAM, executing RedHat Enterprise
Linux Server release 6.1, and Gigabit ethernet as the interconnect. Our pro-
gramming model is implemented in C++ language and uses MPICH2 (version
1.4.1p1) as the underlying communication library. The comparisons have been
performed over a varying number of nodes ranging between 16 and 128 (with
only one core at each node), consistent with our focus on distributed memory
parallelism. Both in this and next section, we repeated each experiment 5 times
and report the average results.

1 Please see https://software.sandia.gov/mantevo.
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Figure 3(a) and (b) demonstrate the execution times of Jacobi and Sobel, as
we increase the number of nodes. Gray portions of the bars correspond to normal
execution times, whereas red portion on top of each bar shows the additional
time spent for checkpointing. For both applications, we use a grid structure with
400 million elements, execute them for 1000 iterations and trigger checkpoint
mechanism every 250 iterations. Compared to the MPI versions, our model’s
implementations have average overheads less than 1 % for Jacobi and 4 % for
Sobel in normal execution times. The size of each global checkpoint in Jacobi
and Sobel is 6 GB for MPI and 3 GB for our model. Corresponding figures show
that checkpointing operations in our model are completed approximately in half
of the time than MPI.

Figure 3(c) and (d) report the same results for MiniMD and Euler. In Min-
iMD, we simulate the behavior of 4 million atoms, whereas we use 12 million
nodes for Euler. We run each application for up to 1000 iterations and take
checkpoints every 100 iterations. Results show that implementing MiniMD and
Euler with DISC brings an average overhead less than 5 % in normal execution
without checkpointing. In MiniMD, each global checkpoint of MPI version is
nearly 2 GB in size, whereas with our programming model, the application-level
checkpoint is only 192 MB. Consequently, on the average, checkpointing time of
MPI is nearly 12 times higher. As the number of nodes increases, checkpointing
times increase, due to the fact that more nodes are contending for pushing the
data to file system at the same time. In Euler, the global snapshot size is again
2 GB for MPI, and 640 MB with our programming model. As a result, the time
required for checkpointing in MPI is nearly 4 times higher.

It is also useful to note that in all cases, after adding the normal execu-
tion and checkpointing times, our model is faster. In some of the cases, par-
ticularly, execution of MiniMD and Euler on 128 nodes, our model reduces the
total execution time at least by a factor of 2, when checkpointing overheads
are included. Furthermore, we can see that with increasing number of nodes,
as well as with increasing complexity of applications, the relative advantage of
our model increases. The former is because of increasing contention for I/O
related to checkpointing, whereas, the latter is because a full application has
many more structures than those that need to be checkpointed at the applica-
tion level. Because Jacobi and Sobel are small templates, the application-level
checkpoint is nearly 50 % of the size of system-level checkpoint. In comparison,
for a more complex application like MiniMD, the ratio is close to 10 %. Thus, we
can see that for most applications, we can expect significant performance from
our model.

5.2 Replication

Next, we present the results for DISC implementations of the previous applica-
tions, when we replicate compute-function execution in each process. We evaluate
our partial replication approach on Intel Xeon Phi 7110P many-core coprocessor.
The reason for choosing this architecture is that many-core systems are likely to

adrien.cassagne@inria.fr



32 M.C. Kurt et al.

 2

 4

 6

 8

 10

 12

 14

30 60 120 240

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Number of Processes (Subdomains)

no rep
rep

rep+ofc
rep+ofc+ncs

(a) Jacobi

 2

 4

 6

 8

 10

 12

 14

 16

 18

30 60 120 240

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Number of Processes (Subdomains)

no rep
rep

rep+ofc
rep+ofc+ncs

(b) Sobel

 20

 40

 60

 80

 100

30 60 120 240

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Number of Processes (Subdomains)

no rep
rep

rep+ofc
rep+ofc+ncs

(c) MiniMD

 1

 2

 3

 4

 5

 6

 7

 8

 9

30 60 120 240

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Number of Processes (Subdomains)

no rep
rep

rep+ofc
rep+ofc+ncs

(d) Euler

Fig. 4. Execution times of four applications without any replication (no rep), with plain
replication (rep) and replication with improvements for cache utilization (rep+ofc and
rep+ofc+ncs). Execution times for no rep with 1 process are 307.9, 398.9, 2686.2 and
213.2 s in Jacobi, Sobel, MiniMD and Euler, respectively. The same execution times
for the best replication version rep+ofc+ncs are 316.2, 474.5, 2738.3 and 214.8 s.

be common in the exascale era, where soft errors will also be more likely. Specif-
ically, the coprocessor we have used has 61 cores running at 1.1 GHz with 32KB
L1 cache, 512 KB L2 cache per core and 8GB device memory for all cores, and
is capable of running 244 hardware threads with hyperthreading support. All
applications were compiled by Intel icpc-13.1.0 compiler with -O3 optimization
with auto vectorization flag on. Each process replicates the compute-function
execution step using OpenMP multi-threading library. We run all applications
for 100 iterations. To mitigate the impact of system noise, we dedicate core0 of
Xeon Phi to the OS and pin DISC processes to hardware threads between core1
and core60. Original and replica threads in each process are pinned to the same
core, except configurations where we have 1 and 30 processes.

Figure 4(a) and (b) present the replication results for Jacobi and Sobel. For
each application, we compare the performance of four DISC versions; (1) execu-
tion without any replication (no rep), (2) execution with plain replication (rep),
(3) execution with replication and on the fly checksum calculation (rep+ofc),
and finally (4) execution with replication, on the fly checksum calculation and
no replica computation-space (rep+ofc+ncs). All DISC versions are run with 1,
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30, 60, 120 processes. For 240 processes, we only report the results for no replica-
tion version, since the replication versions utilize all of the 240 hardware threads
with 120 processes. The figure shows that for Jacobi at 120 processes DISC
replication versions rep, rep+ofc and rep+ofc+ncs have 118 %, 44 % and 33 %
overheads, respectively, over execution with no replication. Note that because
the 240 thread no rep version does not have better performance over the 120
thread version, the results from 120 threads can be used to establish overheads of
replication over the most efficient execution without replication. For Sobel, with
the same number of processes, the overheads are 102 %, 51 % and 45 %. These
results indicate that two improvements over the plain replication scheme lead
to significant reductions in total overhead by reducing data access costs during
checksum calculation and improving overall cache utilization.

Figure 4(c) and (d) present the results for MiniMD and Euler. At 120 proces-
ses, DISC replication strategy causes 13 %, 15 % and 9 % overheads in MiniMD,
respectively for rep, rep+ofc and rep+ofc+ncs versions. In Euler, the same over-
heads are 34 %, 41 % and 24 %. Although the overheads with the plain replication
version itself is quite small, we see that the suggested improvements do not lead
to substantial benefits compared to Jacobi and Sobel. This is mainly due to the
fact that computation-space objects in MiniMD and Euler have a smaller size
and they fit in the L2 cache of Xeon Phi cores. Another potential reason is the
following. Xeon Phi employs software and hardware-based data prefetching to
reduce data access latencies. The prefetching mechanism works very aggressively
for stencil kernels and accessing the same data within a core both by original
and replica threads might lead to capacity and conflict misses. Furthermore,
an existing analysis on Xeon Phi in [8] reports drops in bandwidth when dif-
ferent threads access the same memory space simultaneously due to the effects
of contention at the interconnect level. Hence, we believe that any data locality
optimization such as on the fly checksum calculation and no replica computation-
space object for kernels such as stencils result in substantial improvements. On
the other hand, due to the irregular data access patterns in MiniMD and Euler,
the amount of data prefetching is limited. The overhead for plain replication is
not too high to begin with and the improvements in rep+ofc and rep+ofc+ncs
versions are less visible.

Table 1. Error detection rates for plain replication (rep) and replication with on the
fly checksum and no replica computation-space object (rep+ofc+ncs) versions both
without and with soft error injection.

Normal execution With error injection

rep rep+ofc+ncs rep rep+ofc+ncs

Jacobi 0% 0 % 100 % 100 %

Sobel 0% 0 % 100 % 100 %

MiniMD 0% 0 % 100 % 100 %

Euler 0% 0 % 24 % 100 %

adrien.cassagne@inria.fr



34 M.C. Kurt et al.

As the last experiment, we show how effective DISC partial replication strat-
egy is in detecting soft errors. Table 1 reports error detection rates when the
four applications are run both when there is no soft error occurrence during
execution and when a single soft error is injected. Error injection is done man-
ually by flipping a single bit of a random stack variable during the execution
of compute-functions. We repeat the same experimental setup for two versions;
plain replication (rep) and replication with on the fly checksum and no replica
computation-space (rep+ofc+ncs). Each configuration is performed 50 times and
error detection rates show how many times DISC detected an error in these runs
as a percentage. Results show that when there is no soft error injection, error
detection rate for both versions is 0 % meaning that DISC replication strategy
does not produce any false positives. Moreover, in Jacobi, Sobel and MiniMD,
both versions are able to detect injected soft errors and achieve 100 % error detec-
tion rate. As the only exception, in Euler, plain replication version detects only
24 % of injected errors, whereas rep+ofc+ncs again achieves a 100 % detection
rate. This is due to the fact that in Euler each corrupted stack variable makes
two contributions to the computation-space objects, one being positive and the
other negative. When checksums are calculated in plain replication scheme, pos-
itive and negative contributions seem to cancel out each other reducing overall
detection rate. In contrary, rep+ofc+ncs version is insusceptible to such can-
cellation, since checksums are calculated by using the corrupted assigned values
directly and ignoring their sign.

6 Conclusion

In this paper, we presented how DISC, a parallel programming model for iterative
scientific applications based on structured, unstructured grids and N-body simu-
lations, is extended to leverage low-overhead fault-tolerance support. We showed
that the existing abstractions in DISC model for automated inter-process com-
munication and work partitioning/re-partitioning can be also used for automated
application-level checkpointing and replicated execution to detect soft error occur-
rences. The experimental evaluation shows that checkpointing in DISC model pro-
vides significant improvements over system-level checkpointing scheme and soft
errors can be detected by a partial replication strategy with low overheads.

Acknowledgments. This work was supported by National Science Foundation under
the award CCF-1319420, and by the Department of Energy, Office of Science, under
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Abstract. We extend contention adapting trees (CA trees), a family
of concurrent data structures for ordered sets, to support linearizable
range queries, range updates, and operations that atomically operate on
multiple keys such as bulk insertions and deletions. CA trees differ from
related concurrent data structures by adapting themselves according to
the contention level and the access patterns to scale well in a multitude of
scenarios. Variants of CA trees with different performance characteristics
can be derived by changing their sequential component. We experimen-
tally compare CA trees to state-of-the-art concurrent data structures and
show that CA trees beat the best data structures we compare against
with up to 57 % in scenarios that contain basic set operations and range
queries, and outperform them by more than 1200 % in scenarios that also
contain range updates.

1 Introduction

Data intensive applications on multicores need efficient and scalable concurrent
data structures. Many concurrent data structures for ordered sets have recently
been proposed (e.g [2,4,8,11]) that scale well on workloads containing single key
operations, e.g. insert, remove and get. However, most of these data structures
lack efficient and scalable support for operations that atomically access multiple
elements, such as range queries, range updates, bulk insert and remove, which are
important for various applications such as in-memory databases. Operations that
operate on a single element and those that operate on multiple ones have inher-
ently conflicting requirements. The former achieve better scalability by using
fine-grained synchronization, while the latter are better off performance-wise if
they employ coarse-grained synchronization. The few data structures with scal-
able support for some multi-element operations [1,3] have to be parameterized
with the granularity of synchronization. Setting this parameter is inherently dif-
ficult since the usage patterns and contention level are sometimes impossible
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to predict. This is especially true when the data structure is provided as a gen-
eral purpose library.

Contention adapting trees (CA trees) [18] is a new family of concurrent data
structures for ordered sets, that adapt their synchronization granularity accord-
ing to the contention level and the access patterns even when these change
dynamically. In this work, we extend CA trees with support for operations that
atomically access multiple elements. As we will see, CA trees provide good scala-
bility both in contended and uncontended situations. Moreover they are flexible:
CA tree variants with different performance characteristics can be derived by
selecting their underlying sequential data structure component. CA trees sup-
port the common interfaces of sets, maps and key-value stores as well as range
queries, range updates, bulk inserts, bulk removes and other operations that
atomically access multiple keys. Experiments on scenarios with a variety of mixes
of these operations show that CA trees provide performance that is significantly
better than that obtained by state-of-the-art data structures for ordered sets
and range queries. All these make CA trees suitable for a multitude of applica-
tions, including in-memory databases, key-value stores and general purpose data
structure libraries.

Definitions. A range query operation atomically takes a snapshot of all elements
belonging to a range [a, b] of keys. A range update atomically applies an update
function to all values associated with keys in a specific key range. A bulk insert
atomically inserts all elements in a list of keys or key-value pairs. (A bulk remove
is defined similarly.) We call operations that operate on a range of elements range
operations and use multi-element operations as a general term for operations that
atomically access multiple elements.

Overview. We start by reviewing related work (Sect. 2) before we introduce
the CA trees in detail (Sect. 3) and compare them experimentally to related
data structures (Sect. 4). The paper ends with some discussion and concluding
remarks (Sect. 5).

2 Related Work

In principle, concurrent ordered sets with linearizable range operations can be
implemented by utilizing software transactional memory (TM): the programmer
simply wraps the operations in transactions and lets the TM take care of the
concurrency control to ensure that the transactions execute atomically. Even
though some scalable data structures have been derived by carefully limiting the
size of transactions (e.g. [1,7]), currently transactional memory does not offer a
general solution with good scalability; cf. [1].

Brown and Helga have extended the non-blocking k-ary search tree [4] to
provide lock-free range queries [3]. A k-ary search tree is a search tree where all
nodes, both internal and leaves, contain up to k keys. The internal nodes are
utilized for searching, and leaf nodes contain all the elements. Range queries are
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performed in k-ary search trees with immutable leaf nodes by using a scan and
a validate step. The scan step scans all leaves containing keys in the range and
the validate step checks a dirty bit that is set before a leaf node is replaced by a
modifying operation. Range queries are retried if the validation step fails. Unfor-
tunately, non-blocking k-ary search trees provide no efficient way to perform
atomic range updates or multi-element modification operations. Additionally,
k-ary search trees are not balanced, so pathological inputs can easily make them
perform poorly. Robertson investigated the implementation of lock-free range
queries in a skip list: range queries increment a version number and a fixed size
history of changes is kept in every node [15]. This solution does not scale well
because of the centralized version number counter. Also, it does not support
range updates.

Functional data structures or copy-on-write is another approach to provide
linearizable range queries. Unfortunately, this requires copying all nodes in a
path to the root in a tree data structure which induces overhead and makes the
root a contended hot spot.

The Snap tree data structure [2] provides a fast O(1) linearizable clone oper-
ation by letting subsequent write operations create a new version of the tree.
Linearizable range queries can be performed in a Snap tree by first creating
a clone and then performing the query in the clone. Snap’s clone operation is
performed by marking the root node as shared and letting subsequent update
operations replace shared nodes while traversing the tree. To ensure that no
existing update operation can modify the clone, an epoch object is used. The
clone operation forces new updates to wait for a new epoch object by closing the
current epoch and then waits for existing modifying operations (that have reg-
istered their ongoing operation in the epoch object) before a new epoch object
is installed. The Ctrie data structure [13] also has a fast clone operation whose
implementation and performance characteristics resembles Snap; see [3].

Range operations can be implemented in data structures that utilize fine-
grained locking by acquiring all necessary locks. For example, in a tree data
structure where all elements reside in leaf nodes, the atomicity of the range
operation can be ensured by locking all leaves in the range. This requires locking
at least n/k nodes, if the number of elements in the range is n and at most
k elements can be stored in every node. When n is large or k is small the
performance of this approach is limited by the locking overhead. On the other
hand, when n is small or k is large the scalability is limited by coarse-grained
locking. In contrast, as we will see, in CA trees k is dynamic and adapted at
runtime to provide a good trade-off between scalability and locking overhead.

The Leaplist [1] is a concurrent ordered set implementation with native sup-
port for range operations. Leaplist is based on a skip list data structure with
fat nodes that can contain up to k elements. The efficient implementation of the
Leaplist uses transactional memory to acquire locks and to check if read data is
valid. The authors of the Leaplist mention that they tried to derive a Leaplist ver-
sion based purely on fine-grained locking but failed [1], so developing a Leaplist
without dependence on STM seems to be difficult. As in trees with fine-grained
locking, the size of the locked regions in Leaplists is fixed and does not adapt
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according to the contention as in CA trees. Furthermore, the performance of CA
trees does not depend on the availability and performance of STM.

Operations that atomically operate on multiple keys can be implemented in
any data structure by utilizing coarse-grained locking. By using a readers-writer
lock, one can avoid acquiring an exclusive lock of the data structure for some
operations. Unfortunately, locking the whole data structure is detrimental to
scalability if the data structure is contended. The advantage of coarse-grained
locking is that it provides the performance of the protected sequential data
structure in the uncontended case. As we will soon see, CA trees provide the
high performance of coarse-grained locking in the uncontended cases and the
scalability of fine-grained synchronization in contended ones by adapting their
granularity of synchronization according to the contention level.

3 Contention Adapting Search Trees

The structure and components of CA trees are as follows. The elements (key-
value pairs or keys) contained in a CA tree are stored in sequential ordered set
data structures (e.g., AVL trees, skip lists, etc.) which are rooted by base nodes.
Each base node contains a lock that maintains statistics about the current level
of the node’s contention. The synchronization of accesses to a particular base
node is handled independently of all other base nodes.

Fig. 1. The structure of a CA tree. Num-
bers denote keys, a node whose flag is valid
is marked with a green hook; an invalid one
with a red cross (Color figure online).

Base nodes are linked together by
routing nodes as depicted in Fig. 1.
The routing nodes do not contain ele-
ments; instead they contain keys which
are only used to facilitate searching. As
in ordinary binary search trees, all ele-
ments contained in the left branch of
a routing node with key K have keys
smaller than K and all elements con-
tained in the right branch have keys
greater than or equal to K. When it is
detected that contention on a partic-
ular base node B is high, the subtree
rooted by B is split to reduce the con-
tention. Symmetrically, if contention
on a base node B is detected to be low,
B is joined with a neighbor base node
to reduce the search path and to make
atomic access of larger parts of the CA
tree more efficient. An example of a split and a join operation is shown in Fig. 2.

Contention detection is done by simply checking whether waiting for the lock
of a base node was required or not, and increasing or decreasing the statistics
counter (which is located in the base node lock) accordingly. Thresholds for this
counter are used to decide when adaptation shall be performed. A good heuristic
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is to do adaptation for high contention eagerly and adaptation for low contention
only when the contention has been low for many operations. This heuristics
also avoids too frequent adaptations back and forth [18]. This mechanism for
contention detection has low overhead and works well in practice. Still, other
mechanisms can be used, e.g., based on the back-off time in an exponential
back-off spin lock [12].

Searching in the routing node layer is done without acquiring any locks. How-
ever, as seen in Fig. 1, besides a key, routing nodes also have a valid flag (✓or ✗)
and a lock. These are used to synchronize between concurrent join operations
(i.e., adaptations for low contention). Since, as explained above, join operations
happen relatively infrequently in CA trees, the locks in the routing nodes do not
limit scalability in practice.

Single-key Modification Operations. Operations such as insert and remove start
from the root of the CA tree and search for the base node B under which the
element/key that is given as parameter to the operation will be inserted or
removed. Recall that the traversal of the routing nodes does not acquire any
locks. When B is reached, it is locked and then its valid flag is checked. If this
flag is false (✗), the search needs to be retried. A base node becomes invalid
when it is replaced by a split or a join. A search that ends up in an invalid base
node thus needs to be retried until a valid base node is found. When this has
happened, the operation is simply forwarded to the sequential data structure
rooted by the base node. Before the base node is unlocked and the operation
completes, we check if enough contention or lack of contention has been detected
to justify an adaptation. If high contention is detected, the elements in the base
node are split into two new base nodes that are linked together by a routing
node. Figure 2a and b show CA trees before and after base node B2 and the
data structure Y is split (75 is the split key). In the reverse direction, if low
contention is detected, the sequential data structure of the base node B is joined
with that of a neighbor base node and the parent routing node of B is spliced
out together with B. Figure 2a and c show CA tree structures before and after
base node B2 is spliced out from the tree and the elements of its Y structure are
joined with those of X. We refer to [18] for pseudocode and a detailed description
of the algorithms for splitting and joining base nodes and single key operations.

Single-key Read-only Operations. Read-only operations like get, contains, find-
Max, etc. can work in a similar fashion as modification operations. However, on
a multicore system, acquiring even a RW lock in read mode for read-only oper-
ations can cause bad scalability due to increased cache coherence traffic. There-
fore, the performance and scalability of read-only operations can be improved
if acquiring a lock can be avoided. By using a sequence lock [10] in the base
nodes, read-only operations can attempt to perform the operation optimistically
by checking the sequence number in the lock before and after the read-only oper-
ation has been performed on the base node. If the optimistic attempt fails, the
base node lock can be acquired non-optimistically. This sequence lock optimiza-
tion avoids writing to shared memory in the common case when the base node
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(a) Initial CA tree (b) CA tree after a split (c) CA tree after a join

Fig. 2. Effect of the split and join operations on the CA tree of Fig. 2a.

is not contended, which greatly improves performance in practice [18]. The con-
currency in the data structure can be further improved by using a sequence lock
with support for concurrent execution of read-only critical sections. By using
such a lock, one can acquire the base node lock in read-only mode when the
optimistic read attempt fails, and thus allowing concurrent reads to read from
the base node at the same time. Note that an optimistic read does not change
the statistics counter, because that would involve writing to shared memory and
would defeat the purpose of having such operations. If the optimistic read fails
and the lock is acquired in read mode, our implementation adds to the contention
statistics to decrease the likelihood of optimistic read failures in the future1.

Multi-element Operations. CA trees also support operations that atomically
operate on several keys, such as bulk insert, bulk remove, and swap operations
that swap the values associated with two keys. Generic pseudocode for such
operations appears in Fig. 4a; its helper function manageCont appears in Fig. 3a.
Such operations start by sorting the elements given as their parameter (line 7).
Then all the base nodes needed for the operations are found (line 12) and locked
(lines 15–16) in sorted order. Locking base nodes in a specific order prevents
deadlocks. The method lockIsContended in the base node, locks the base node
lock and return true if contention was detected while locking it and the method
lockNoStats locks the base node lock without recording any contention. When
multi-element operations are given keys that all reside in one base node, only
this base node needs to be locked. One simply has to query the sequential data
structure in the current base node for the maximum key (line 26) to see which
of the given elements must belong to a base node. This can be compared to
data structures that utilize non-adaptive fine-grained synchronization and thus
either need to lock the whole data structure or all involved nodes individually.

1 We perform the change to the contention statistics counter non-atomically. Thus, it
is possible for a concurrent read operation to overwrite the change. Note that this
does not effect the correctness of the data structure as it only affects the frequency
of its adaptations.
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Finally, multi-key operations end by adjusting the contention statistics, unlock
all acquired locks, and split or join one of the base nodes (lines 35–46) if required.

Fig. 3. Helper functions for Fig. 4.

Range Operations. We will now describe
an algorithm for atomic range opera-
tions that locks all base nodes that
can contain keys in the range [a, b].
Generic pseudocode for such opera-
tions can be seen in Fig. 4b and
its helper function manageCont and
getNextBaseNodeAndPath can be seen in
Fig. 3. To prevent deadlocks, the base
nodes are always locked in increasing
order of the keys that they can contain.
Therefore, the first base node to lock is
the one that can contain the smallest key
a in the range. This first base node can be
found (line 5 in Fig. 4b) and locked (line 6)
using the algorithm described for single-
key operations [18]. Finding the next base
node (line 21 in Fig. 4b) is not as sim-
ple as it might first seem, since routing
nodes can be spliced out and base nodes
can be split. The two problematic cases
that may occur are illustrated in Fig. 2.
Suppose that the base node marked B1

has been found through the search path
with routing nodes with keys 80, 40, 70, 60
as depicted in Fig. 2a. If the tree stays
as depicted in Fig. 2a, the base node B2

would be the next base node. However,
B2 may have been spliced out while the range operation was traversing the rout-
ing nodes (Fig. 2c) or split (Fig. 2b). If one of these cases happens, we will detect
this since we will end up in an invalid base node in which case the attempt to
find the next base node will be retried. When we find the next base node we
will not end up in the same invalid base node twice if the following algorithm is
applied (also depicted in Fig. 3b):

1. If the last locked base node is the left child of its parent routing node P then
find the leftmost base node in the right child of P (Fig. 3b, line 11).

2. Otherwise, follow the reverse search path from P until a valid routing node R
with a key greater than the key of P is found (Fig. 3b, line 17). If such an R is
not found, the current base node is the rightmost base node in the tree so all
required base nodes are already locked (Fig. 3b, lines 6 and 26). Otherwise,
find the leftmost base node in the right branch of R (Fig. 3b, line 19).
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The argument why this algorithm is correct is briefly as follows. For case 1, note
that the parent of a base node is guaranteed to stay the same while the base
node is valid; cf. also [16]. For case 2, note that once we have locked a valid base
node we know that no routing nodes can be added to the search path that was
used to find the base node, since the base node in the top of the path must be
locked for a new routing node to be linked in. Also, the above algorithm never
ends up in the same invalid base node more than once since the effect of a split or
a join is visible after the involved base nodes have been unlocked. Finally, if the
algorithm ever finds a base node B2 that is locked and valid and the previously
locked base node is B1, then there cannot be any other base node B′ containing
keys between the maximum key of B1 and the minimum key of B2. This is true
because if a split or a join had created such a B′, then B2 would not be valid.

An Optimistic Read Optimization for Range Queries. For the same reasons, as
discussed previously for single-key read-only operations, it can be advantageous
to perform range queries without writing to shared memory. This can be done
by first reading the sequence numbers (in the locks) and validating the base
nodes containing the elements in the range. This optimistic attempt is aborted
if a sequence number indicates that a write operation is currently changing the
content of the base node. After acquiring sequence numbers for all involved
base nodes, the range query is continued by reading all elements in the range,
checking the sequence number again after the elements in a base node have been
read. If the sequence numbers have not changed from the initial scan to after
the elements have been read, then one can be sure that no write has interfered
with the operation. Thus, the range query will appear to be atomic. As soon as
a validation of a sequence number fails or inconsistent state is detected in the
sequential data structure, the optimistic attempt will abort. Range queries for
which the optimistic attempt failed are performed by acquiring the base node
locks belonging to the range in read mode.

Contention Statistics in Multi-element Operations. A multi-element operation
performed by non-optimistic locking that only requires one base node changes
the contention statistics counter in the same way as single-element operations
and also uses the same split and join thresholds as single-element operations.
The pseudocode that handles contention in this case can be found in Fig. 3a
and is called from line 36 in Fig. 4a and line 37 in Fig. 4b. When contention is
detected, the contention statistics counter in that base node is increased (line 2)
to make a base node split more likely and otherwise the contention statistics
counter is decreased (line 3) to make a base node join more likely. Lines 4 to 10
check if one of the thresholds for adaptation has been reached and performs the
appropriate adaptation in that case.

If a multi-element operation performed by non-optimistic locking requires
more than one base node, the contention statistics counter is decreased
(lines 42–43 in Fig. 4a and lines 44–45 in Fig. 4b) in all involved base nodes
to reduce the chance that future multi-element operations will require more
than one base node. Before unlocking the last base node, low-contention join or
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Fig. 4. Pseudocode for bulk operations and range operations.

high-contention split is performed on that base node if the thresholds are reached
(line 42 in Fig. 4a and line 44 in Fig. 4b).

Range operations where the optimistic attempt succeeds do not change the
contention statistics of any of the base nodes that they use. Doing so would
defend the purpose of the optimistic attempt which is to avoid writing to shared
state. However, if the optimistic attempt fails, the contention statistics is updated
as described before.

Correctness. In a previous publication [18] we provided proofs for that the algo-
rithm for single-key operations is deadlock free, livelock free as well as a proof
sketch for its linearizability. Here, we will briefly repeat the outlines of the proofs
for single-key operations and provide a proof sketch that the properties deadlock
freedom, livelock freedom and linearizability are all provided by CA trees when
extended with the range operations and bulk operations that we have described
in detail in this paper. The interested reader can find more detailed proofs in a
technical report available online [16].
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Deadlock freedom can be shown by proving that all locks are acquired in a
specific order. All single-key operations (except operations that perform a low-
contention join) acquire a single lock; cf. [16]. Low-contention join can acquire
base node locks in different orders but since this is done with a non-blocking
try lock call and all locks that the operation is holding are released if the try
lock call fails, this cannot cause a deadlock. The proof for deadlock freedom can
easily be extended to also include bulk operations and range operations that we
have described in this paper. As presented earlier, these operations acquire the
base node locks in a specific order (increasing order of the keys that they can
store), with the exception that they might also perform a low-contention join
which cannot cause deadlocks as we have described above. Thus, a CA tree with
multi-element operations is deadlock free since there is a specific order in which
the locks are acquired. Whenever locks are acquired in a different order, this is
done with a try lock call and all held locks are released if the try lock call fails.

Livelock freedom can be shown by proving that when an operation or part
of an operation has to be retried due to interference from another thread, some
other thread must have made progress. The two types of retries are the same
for both multi-element operations and single-key operations. The first type of
retry can happen in the function for low-contention join and is caused by a
concurrent low-contention join that removes a routing node. This can not cause
a livelock since, if a retry is triggered at this point, another thread must have
successfully spliced out a routing node from the tree and this routing node
will not be observed when we retry; cf. [16]. The second type of retry happens
when an invalid base node is observed. An invalid base node is only observed
if another thread has successfully performed a contention-adapting split or join
which means that another thread has made progress. Single-key operations han-
dle this case by retrying the whole operation, while operations involving multiple
keys only need to retry the search for the next base node. When the search for
a base node is retried the same invalid base node will not be found since the
effect of the split or join that sets the base node to invalid will be visible after
the base node(s) involved in the split or join has(have) been unlocked.

Linearizability. The linearization point of an operation that locks all base nodes
that it reads from or writes to is at some point while holding the base node locks
of all the base nodes that it operates on. The linearization point of an oper-
ation that is successfully performed with an optimistic read attempt is some-
where between the first and second sequence number scan. If the optimistic read
attempt fails, the operation will instead acquire the locks non-optimistically and
the linearization point will be at some point while holding all the base node locks.
It can be proven [16] that CA trees maintain the following property: If a thread
t has searched in a CA tree for a key K using the binary search tree property
and ended up in base node B that it has locked and validated, then K must be
in B and not in any other base node if it is in the abstract set represented by the
CA tree. Using this property as well as the properties mentioned above in the
arguments for the correctness of range operations it is easy to see that the CA
tree operations appear to happen atomically at their linearization points, since

adrien.cassagne@inria.fr



Efficient Support for Range Queries and Range Updates 47

they are either holding locks of all base nodes that can contain keys involved in
the operation or ensuring that no other thread has changed any key involved in
the operation while the operation is being performed by the final check of the
sequence numbers in the sequence locks.

Flexibility of CA Trees. A split operation in an ordered set data structure splits
the data structure into two data structures so that all elements in one are smaller
than the elements in the other. The join operation merges two data structures
where the greatest key in one of them is smaller than the smallest key in the
other. Any sequential ordered set data structure that has efficient support for
the split and join operations can be used to store elements under the base nodes
of CA trees. This property makes CA trees highly flexible since the underlying
sequential data structure can be changed without changing the CA tree structure
itself. The sequential data structure component of a CA tree could be passed as a
parameter by the user when creating a CA tree instance. One could even change
the sequential ordered set data structure at run time depending on which type
of operations are most frequent; however, it is beyond the scope of this paper to
investigate the effect of this possibility.

Many ordered set data structures support efficient split and join operations
including red-black trees and AVL trees that do these operations in O(log(N))
time [9,19]. Skip lists are randomized data structures for ordered sets that also
have efficient support for split2 and join [14]. By using both back and forward
pointers in the skip list, both split and join as well as maxKey have efficient
implementations; in fact constant time in skip lists with a fixed number of levels.
Skip lists also provide efficient support for range operations since all elements
are connected in an ordered list at the top level of a skip list. Using a skip list
with so called fat nodes, i.e., nodes that contain more than one element, we can
further increase the performance of range operation due to improved locality.
We will experiment with AVL trees and skip lists with fat nodes in the next
section. Our skip list implementation can store up to k elements in its nodes.
The nodes are split if an insert would cause a node to contain k + 1 elements,
and nodes are spliced out if a remove operation would create an empty node.
The keys in the skip list are kept in compact arrays to improve cache locality
when searching and performing range operations.

4 Experiments

Let us now investigate the scalability of two CA tree variants: one with an
AVL tree as sequential structure (CA-AVL) and one with a skip list with fat
nodes (CA-SL) as sequential structure. We compare them against the lock-
free k-ary search tree [3] (k-ary), the Snap tree [2] (Snap) and a lock-free
skip list (SkipList). All implementations are those provided by the authors.

2 The efficient skip list split operation splits the data structure so that on average half
the keys will be in each resulting split.
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SkipList is implemented by Doug Lea in the Java Foundation Classes as the
class ConcurrentSkipListMap.3

SkipList marked with dashed gray lines in the graphs does not cater for
linearizable range queries nor range updates. We include SkipList in the mea-
surements only to show the kind of scalability one can expect from a lock-free
skip list data structure if one is not concerned about consistency of results from
range operations. Range operations are implemented in SkipList by calling the
subSet method which returns an iterable view of the elements in the range.
Since changes in SkipList are reflected in the view returned by subSet and vice
versa, range operations are not atomic.

In contrast, the k-ary search tree supports linearizable range queries and
the Snap tree supports linearizable range queries through the clone method.
However, neither the k-ary nor the Snap tree provide support for linearizable
range updates. In the scenarios where we measure range updates we implement
them in these data structures by using a frequent read optimized readers-writer
lock4 with a read indicator that has one dedicated cache line per thread. Thus,
all operations except range updates acquire the RW-lock in read mode. We have
confirmed that this method has negligible overhead for all cases where range
updates are not used, but use the implementations of the data structures without
range update support in scenarios that do not have range updates.

We use k = 32 (maximum number of elements in nodes) both for CA-SL and
k-ary trees. This value provides a good trade-off between performance of range
operations and performance of single-key modification operations. For the CA
trees, we initialize the contention statistics counters of the locks to 0 and add 250
to the counter to indicate contention; we decrease the counter by 1 to indicate
low contention. The thresholds −1000 and 1000 are used for low contention and
high contention adaptations.

The benchmark we use measures throughput of a mix of operations per-
formed by N threads on the same data structure during T seconds. The keys
and values for the operations get, insert and remove as well as the starting key
for range operations are randomly generated from a range of size R. The data
structure is pre-filled before the start of each benchmark run by performing R/2
insert operations. In all experiments presented in this paper R = 1000000, thus
we create a data structure containing roughly 500000 elements. In all captions,
benchmark scenarios are described by a strings of the form w:A% r:B% q:C%-R1

u:D%-R2, meaning that on the created data structure the benchmark performs
(A/2)% insert, (A/2)% remove, B% get operations, C% range queries of max-
imum range size R1, and D% range updates with maximum range size R2.

3 We do not compare experimentally against the Leaplist [1] whose main implemen-
tation is in C. Prototype implementations of the Liplist in Java were sent to us by
its authors, but they ended up in deadlocks when running our benchmarks which
prevented us from obtaining reliable measurements. Instead, we refer to Sect. 2 for
an analytic comparison to the Leaplist.

4 We use the write-preference algorithm [5] for coordination between readers and writ-
ers and the StampedLock from the Java library for mutual exclusion.
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Fig. 5. Scalability of throughput (ops/µs) on the y-axis and thread count on the x-axis.

The size of each range operation is randomly generated between 1 and the
maximum range size. The benchmarks presented in this paper were run on a
machine with four AMD Opteron 6276 (2.3 GHz, 16 cores, 16M L2/16M L3
Cache), giving a total of 64 physical cores and 128 GB or RAM, running Linux
3.10-amd64 and Oracle Hotspot JVM 1.8.0 31 (started with parameters -Xmx4g,
-Xms4g, -server and -d64).5 The experiments for each benchmark scenario were
run in a separate JVM instance and we performed a warm up run of 10 seconds
followed by three measurement runs, each running for 10 seconds. The average
of the measurement runs as well as error bars for the minimum and maximum
run are shown in the graphs, though often the error bars are very small and
therefore not visible.

Benchmarks without Range Updates. Let us first discuss the performance results
in Fig. 5, showing scenarios without range updates. Figure 5a, which shows
throughput in a scenario with a moderate amount of modifications (20 %) and
5 We also ran experiments on a machine with four Intel(R) Xeon(R) E5-4650 CPUs

(2.70GHz each with eight cores and hyperthreading) both on a NUMA setting and
on a single chip, showing similar performance patterns as on the AMD machine.
Results are available online [6].
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Fig. 6. Scalability of throughput (ops/µs) on the y-axis and thread count on the x-axis.

small range queries, shows that the k-ary and CA-AVL tree perform best in this
scenario, tightly followed by the CA-SL and SkipList with the non-atomic range
queries. We also note that the Snap tree does not scale well in this scenario,
which is not surprising since a range query with a small range size will eventu-
ally cause the creation of a copy of every node in the tree. Let us now look at
Fig. 5b showing throughputs in a scenario with many modifications (50 %) and
larger range queries, and Fig. 5c corresponding to a scenario with the same max-
imum range query size and a more moderate modification rate (20 %). First of
all, the better cache locality for range queries in CA-SL and k-ary trees is visible
in these scenarios where the range sizes are larger. k-ary only beats CA-AVL
with a small amount up to 32 threads and then k-ary’s performance drops. This
performance drop might be caused by its starvation issue in the range query
operation that can cause a range query to be retried many times (possibly for-
ever). This can be compared to the CA trees that acquire locks for reads if the
first optimistic attempt fails and thus reducing the risk of retries. The scalability
of the CA trees shown in Fig. 5b, i.e., in a scenario with 50 % modification oper-
ations, shows that the range queries in the CA trees tolerate high contention.
Finally, the scenario of Fig. 5d with very wide range queries and moderate mod-
ification rate (20 %) shows both the promise and the limit in the scalability of
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Table 1. Average base node counts (in k) at the end of running two sets of benchmarks:
one using 64 threads but varying the range size R, and one varying the number of
threads.

CA-SL. However, we note that SkipList, which does not even provide atomic
range queries, does not beat CA-SL that outperforms the other data structures
by at least 57 % at 16 threads.

Benchmarks with Range Updates. Let us now look at the scenarios that also
contain range updates shown in Fig. 6. The first of them (Fig. 6a) shows that
k-ary tree’s scalability flattens out between 16 and 32 threads even with as little
as 1 % range updates. Instead, the CA trees provide good scalability all the
way. Remember that we wrap the k-ary operations in critical sections protected
by an RW-lock to provide linearizable range updates in the k-ary tree. In the
scenario of Fig. 6b, where the percentage of range updates is 15 %, we see that
the k-ary tree does not scale at all while the CA trees and SkipList with the non-
atomic range operations scale very well, outperforming the k-ary tree with more
than 1200 % in this case. The two scenarios in Fig. 6c and d have the same rate
of operations but different maximum size for range queries and range updates.
Their results clearly show the difference in performance characteristics that can
be obtained by changing the sequential data structure component of a CA tree.
CA-SL is faster for wider range operations due to its fat nodes providing good
cache locality, but CA-SL is generally slower than the CA-AVL in scenarios with
small range sizes. In Fig. 6d, where the conflict rate between operations is high,
CA-SL reaches its peak performance at 32 threads where it outperforms all other
data structures by more than two times.

We also report average base node counts for the CA trees in the end of
running two sets of scenarios. The numbers in Table 1a show node counts (in k)
for running with 64 threads but varying the maximum range size R. Table 1b
shows node counts (also in k) for scenarios with R fixed to 1000 but varying the
number of threads. These numbers confirm that the CA trees’ synchronization
is adapting both to the contention level (increasing the number of threads results
in more base nodes) and to the access patterns (increased range size results in
fewer base nodes). We also confirmed by increasing the running time of the
experiments that the number of base nodes stabilizes around a specific value for
each scenario, which means that base nodes do not get split indefinitely.

5 Concluding Remarks

Given the diversity in sizes and heterogeneity of multicores, it seems rather
obvious that current and future applications will benefit from, if not require,
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data structures that can adapt dynamically to the amount of concurrency and
the usage patterns of applications.

This paper has advocated the use of CA trees, a new family of lock-based
concurrent data structures for ordered sets of keys and key-value pair dictio-
naries. CA trees’ salient feature is their ability to adapt their synchronization
granularity according to the current contention level and access patterns. Fur-
thermore, CA trees are flexible and efficiently support a wide variety of opera-
tions: single-key operations, multi-element operations, range queries and range
updates. Our experimental evaluation has demonstrated the good scalability and
superior performance of CA trees compared to state-of-the-art lock-free concur-
rent data structures in a variety of scenarios.

In other work [17], we have described the use of CA trees for speeding and
scaling up single-key operations of the ordered set component of the Erlang
Term Storage, Erlang’s in-memory key-value store. We intend to extend that
work with support for atomic multi-element and range operations and evaluate
the performance benefits of doing so in “real-world” applications. The experi-
mental results in this paper strongly suggest that the performance gains will be
substantial. In addition, we intend to investigate CA trees with more kinds of
adaptations: for example, adaptations in the underlying sequential data struc-
ture component.
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Abstract. This paper proposes a novel optimization framework for the
Data-Flow Graph Language (DFGL), a dependence-based notation for
macro-dataflow model which can be used as an embedded domain-specific
language. Our optimization framework follows a “dependence-first” app-
roach in capturing the semantics of DFGL programs in polyhedral
representations, as opposed to the standard polyhedral approach of deriv-
ing dependences from access functions and schedules. As a first step, our
proposed framework performs two important legality checks on an input
DFGLprogram—checking for potential violations of the single-assignment
rule, and checking for potential deadlocks. After these legality checks are
performed, the DFGL dependence information is used in lieu of standard
polyhedral dependences to enable polyhedral transformations and code
generation, which include automatic loop transformations, tiling, and code
generation of parallel loops with coarse-grain (fork-join) and fine-grain
(doacross) synchronizations. Our performance experiments with nine
benchmarks on IntelXeon and IBMPower7multicore processors show that
the DFGL versions optimized by our proposed framework can deliver up to
6.9× performance improvement relative to standard OpenMP versions of
these benchmarks. To the best of our knowledge, this is the first system to
encode explicit macro-dataflow parallelism in polyhedral representations
so as to provide programmers with an easy-to-use DSL notation with legal-
ity checks, while taking full advantage of the optimization functionality in
state-of-the-art polyhedral frameworks.

1 Introduction

Hardware design is evolving towards manycore processors that will be used in
large clusters to achieve exascale computing, and at the rack level to achieve
petascale computing [29], however, harnessing the full power of the architecture
is a challenge that software must tackle to fully realize extreme-scale computing.
This challenge is prompting the exploration of new approaches to programming
and execution systems, and specifically, re-visiting of the dataflow model — but
now at the software level.

In the early days of dataflow computing, it was believed that programming
languages such as VAL [5], Sisal [27], and Id [7] were necessary to obtain the ben-
efits of dataflow execution. However, there is now an increased realization that
c© Springer International Publishing Switzerland 2016
X. Shen et al. (Eds.): LCPC 2015, LNCS 9519, pp. 57–72, 2016.
DOI: 10.1007/978-3-319-29778-1 4
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“macro-dataflow” execution models [30] can be supported on standard multi-core
processors by using data-driven runtime systems [3,4,36]. There are many ben-
efits that follow from macro-dataflow approaches, including simplified program-
mability [12], increased asynchrony [15], support for heterogeneous parallelism
[32], and scalable approaches to resilience [39]. As a result, a wide variety of pro-
gramming systems are exploring the adoption of dataflow principles [21,28,31],
and there is a growing need for compiler and runtime components to support
macro-dataflow execution in these new programming systems.

At the other end of the spectrum, polyhedral and other compiler frameworks
implicitly uncover dataflow relationships in sequential programs through depen-
dence analysis and related techniques. Though this approach can result in good
performance, it usually requires a sequential program as input, which often limits
portability when compared to higher-level dataflow program specifications.

We argue that a combination of declarative dataflow programming and imper-
ative programming can provide a practical approach both for migrating existing
codes and for writing new codes for extreme-scale platforms. We propose the
use of a Data-Flow Graph Language (DFGL) as an embedded domain-specific
language (eDSL) for expressing the dataflow components in an application. The
DFGL notation is based on the Data Flow Graph Representation (DFGR) intro-
duced in [31]. It enables individual computations to be implemented as arbi-
trary sequential code that operates on a set of explicit inputs and outputs, and
defers the packaging and coordination of inter-step parallelism to the compiler
and the runtime system. We propose a novel optimization framework for DFGL
which enables correctness analysis of the application as well as low level trans-
formations using a polyhedral compiler. Our performance experiments with nine
benchmarks on Intel Xeon and IBM Power7 multicore processors show that
the DFGL versions optimized by our proposed framework can deliver up to
6.9× performance improvement relative to standard OpenMP versions of these
benchmarks.

Section 2 provides the background for this work, Sect. 3 discusses the moti-
vation for the DFGL approach, Sect. 4 gives an overview of the compiler flow
for DFGL subprograms, Sect. 5 describes the key technical points in our app-
roach, Sect. 6 presents our experimental results, Sect. 7 discusses related work
and Sect. 8 contains our conclusions.

2 Background

This section briefly summarizes the underlying DFGL programming model and
the polyhedral compilation framework, which together form the foundation for
the approach introduced in this paper.

2.1 DFGL Model

The Data-Flow Graph Language (DFGL) model is a dependence based nota-
tion for dataflow parallelism, which is based on the Concurrent Collections
(CnC) model [12,21] and the Data Flow Graph Representation (DFGR) [31].
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DFGL describes computations using two main components: steps, that represent
sequential subcomputations; and items, that represent data read and written by
steps. The user describes an application by writing a graph that captures the
relation among the items and steps.

As in the CnC model, steps are grouped into step collections, and repre-
sent all dynamic invocations of the same computational kernel. A unique iden-
tifier (tag) identifies a dynamic instance of a step S in a collection, (S: tag ).
A special env step handles communications with “outside”, e.g., initialization
and emitting final results. Items are grouped into item collections and model all
data used as inputs and outputs to steps. Analogous to tags for steps, elements in
item collection A are uniquely identified by a key : [A: key ]. In general, keys are
represented as functions of step tags, such as affine functions or pure functions
evaluated at run time [31]. The relations among steps and items are described
by the “->” and “::” operations. The operation -> describes data-flow as fol-
lows: [A: key ] -> (S: tag ) denotes item(s) read by a step1, (S: tag ) -> [A:
key ] denotes item(s) written by a step, and (S: tag1 ) -> (S: tag2 ) denotes
a step-to-step ordering constraint. The operation :: describes step creation; i.e.,
(S: tag1 ) ::(T: tag2 ) denotes instance(s) of T created by an instance of S2.
The detailed semantics are shown in past work [31].

DFGL guarantees determinism and data race freedom by enforcing a dynamic
single assignment rule. This rule states that any item in any collection can only
be written once during the whole execution of the program. The model can be
implemented to rely on different underlying runtimes. The compiler also has a
lot of freedom in packaging the parallelism through code transformations such
as loop tiling and generation of fine-grained (doacross) parallelism.

2.2 Polyhedral Compilation Framework

The polyhedral model is a flexible representation for arbitrarily nested loops.
Loop nests amenable to this algebraic representation are called Static Control
Parts (SCoPs) and represented in the SCoP format, where each statement con-
tains three elements, namely, iteration domain, access relations, and schedule.
SCoPs require their loop bounds, branch conditions, and array subscripts to be
affine functions of iterators and global parameters.

Iteration Domain,DS : A statement S enclosed by m loops is represented by an
m-dimensional polytope, referred to as an iteration domain of the statement [19].
Each element in the iteration domain of the statement is regarded as a statement
instance i ∈ DS .

Access Relation, AS (i): Each array reference in a statement is expressed
through an access relation, which maps a statement instance i to one or more
array elements to be read/written [40]. This mapping is expressed in the affine
form of loop iterators and global parameters; a scalar variable is considered as
a degenerate case of an array.

1 Step I/O may comprise a list of items, and item keys may include range expressions.
2 A typical case is env step to create set of step instances where tag is a range.
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Fig. 1. Computation and dependence for Smith-Waterman.

[ int A] ;
( corner : i , j ) −> [A: i , j ] ;
( top : i , j ) −> [A: i , j ] ; ( l e f t : i , j ) −> [A: i , j ] ;
[A: i −1, j −1] , [A: i −1, j ] , [A: i , j −1] −> ( main center : i , j ) −> [A: i , j ] ;
env : : ( corner : 0 , 0 ) ;
env : : ( top : 0 ,{1 . . NW} ) ; env : : ( l e f t :{1 . . NH} , 0 ) ;
env : : ( main center :{1 . . NH} ,{1 . . NW} ) ;
[A:NH,NW] −> env ;

Fig. 2. Input: DFGL for Smith-Waterman.

corner (0 , 0 ) ;
for ( c3 = 1 ; c3 <= NW; c3++) top (0 , c3 ) ;
for ( c1 = 1 ; c1 <= NH; c1++) l e f t ( c1 , 0 ) ;
#pragma omp p a r a l l e l for private ( c3 , c5 , c7 ) ordered (2 )
for ( c1 = 0 ; c1 <= NH/32 ; c1++) {

for ( c3 = 0 ; c3 <= NW/32 ; c3++) {
#pragma omp ordered depend ( s ink : c1 −1, c3 ) depend ( s ink : c1 , c3−1)

for ( c5 = max(1 , 32∗ c1 ) ; c5 <= min(NH, 32∗ c1 +31); c5++)
for ( c7 = max(1 , 32∗ c3 ) ; c7 <= min(NW, 32∗ c3 +31); c7++)

main center ( c5 , c7 ) ;
#pragma omp ordered depend ( source : c1 , c3 )
} }

Fig. 3. Output: optimized OpenMP for Smith-Waterman (using our system).

Schedule, ΘS (i): The sequential execution order of a program is captured by
the schedule, which maps instance i to a logical time-stamp. In general, a sched-
ule is expressed as a multidimensional vector, and statement instances are exe-
cuted according to the increasing lexicographic order of their time-stamps.

Dependence Polyhedra, DS→T : The dependences between statements S and
T are captured by dependence polyhedra — i.e., the subset of pairs (i , i ′) ∈
DS × DT which are in dependence. We note n the dimensionality of DS→T .
Given two statement instances i and i ′, i ′ is said to depend on i if (1) they
access the same array location, (2) at least one of them is a write and (3) i has
lexicographically smaller time-stamp than i ′, that is ΘS(i) ≺ ΘT (i ′).
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3 Motivating Example

The Smith-Waterman algorithm is used in evolutionary and molecular biology
applications to find the optimal sequence alignment between two nucleotide or
protein sequences, using dynamic programming to obtain the highest scoring
solution. We show how this algorithm is encoded in our graph-based represen-
tation and then optimized by our polyhedral framework.

Figure 1 gives a visual representation of the Smith-Waterman algorithm,
which contains 4 kind of steps: a single corner step (C) computing the top-left
matrix corner and collections of steps computing the top row (T), left column
(L) and the main body (M) of the matrix. The three-way arrows mark the flow
of data between steps. As mentioned in Sect. 2.1, each instance of the same step
collection is identified by a unique tag. Using a (NH+1)×(NW+1) integer matrix
(which comprises item collection A), there are NH × NW main steps, each of which
is identified by a tuple-tag (i,j), with 1 ≤ i ≤ NH and 1 ≤ j ≤ NW.

The data dependences (represented by arrows in Fig. 1) are modeled by using
the tag (i,j) to identify a step instance and keys (affine functions of tag) to
specify items; Note that all main steps read 3 items and write one item of
collection A: [A:i-1,j-1], [A:i-1,j], [A:i,j-1] -> (M:i,j) -> [A:i,j].

The DFGL specification for Smith-Waterman is shown in Fig. 2. The first
line of code declares an item collection, where each item is of type int. The
next four lines of code specify, for each of the 4 steps, what items are read and
written, as a function of the step instance’s tag.

The final four lines specify what the environment needs to produce for the
graph to start, and what it needs to emit after completion of the graph as
output data. The environment starts all computation steps via :: operation,
(e.g., main steps of {1 .. NH} × {1 .. NW}). It also reads one item resulting
from the computation (the bottom right corner, which contains the optimal
sequence alignment cost).

Although the dependences in this DFGL program expose a wavefront paral-
lelism (e.g., step instances (M:1,10), (M:2,9), ... (M:10,1) can run in parallel),
the computation granularity of each instance is too small to be implemented as
a concurrent task on current computing systems. Furthermore, there are several
choices on how to implement this wavefront parallelism, e.g., as a regular forall
loop parallelism via loop restructuring (skewing) or using a special runtime that
supports software pipelining. Figure 3 shows the optimized code in OpenMP, as
generated by our framework. Loop tiling is applied to the kernel so as to improve
both data locality and computation granularity. To implement the pipeline par-
allelism, we rely on an OpenMP-based fine-grained synchronization library [34],
which will be supported in OpenMP 4.1 standard [28]. These transformations
brought significant improvements as reported in Sect. 6.

4 Converting DFGL to Polyhedral Representation

In this section, we first introduce the programming flow using DFGL as an embed-
ded domain-specific language (eDSL) for expressing the dataflow components in
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void f oo ( ) {
//C reg ion
int A[NH+1] [NW+1] ;
. . .

#pragma d f g l
{

//DFGL reg ion
[ int A] ;
. . .

}
pr in t (A[NH] [NW] ) ;

}

Fig. 4. DFGL as an embedded DSL Fig. 5. Optimization and build flow for
a DFGL parallel region.

an application. We also introduce the overview of our optimization framework, as
well as the restrictions placed upon DFGL programs for compatibility with the
polyhedral framework.

4.1 Embedded DFGL Programming Flow

As shown in Fig. 4, we use pragma dfgl to specify a DFGL program embedded
in a regular C program. Each item collection in the DFGL program requires a
corresponding array that is declared and in scope at the dfgl pragma. Users
can initialize items and obtain computation results outside the DFGL program
via the corresponding arrays. To enable legality check in Sect. 5.2, users need
to describe which items are to be initialized/emitted as a form of write/read
on the environment, e.g., env -> [A: key ] or [A: key ] -> env. The flow for
compiling a DFGL parallel region is shown in Fig. 5. The user creates the DFGL
description and provides the main program (DFGL environment) and codes for
the compute steps. Then, they use our toolchain, which couples an extended
translator [37] that we created for conversion to SCoP, and an extension to ROSE
Compiler framework [2,33], to obtain an executable for running the application.

The first component of the toolchain is the SCoP converter that transforms
the DFGL representation into a simplified SCoP format as described in Sect. 5.1.
Next, we use the Analyzer to report errors in the input DFGL program and
obtain the dependences. The dependences, along with the information from the
DFGL SCoP, are then fed into the Optimizer. The final stage is the generation
of the optimized OpenMP code, which is built together with the user-provided
main program, kernels and libraries to obtain the executable.

4.2 DFGL Restrictions for Enabling Polyhedral Optimizations

To facilitate the conversion to a polyhedral representation, we focus on a restricted
subset of DFGL that can be summarized as follows: (1) step tags are of the form
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i = (i1, ..., ik) with k the dimensionality of the associated step collection; (2)
item keys are affine expressions of step tags; and (3) all steps are started by the
environment such that the set of steps started can be described using only affine
inequalities of the step tag. Note that a step-to-step dependence is converted into
step-to-item and item-to-step dependences using a new item collection. Both rec-
tangular regions (ranges [31]) and simple polyhedra shaped by affine inequalities
of step tags are supported in DFGL. In practice, ranges and simple polyhedra are
often enough to express the tag sets needed to model regular applications. They
also come with the benefit of easy compilation to a loop-based language, which we
will use to generate parallel OpenMP code.

The implementation we propose relies on generation of C code due to the
benefits of high performance given by a low level language and the ease of pro-
gramming provided by DFGL, which abstracts applications using a high-level
representation. This approach is also appropriate for using DFGL as an embed-
ded DSL, since the OpenMP code that our toolchain generates can be integrated
into larger code bases (in effect, an OpenMP parallel region is generated for each
DFGL parallel region), while the user steps, which the generated code calls, can
themselves be optimized routines or library calls (possibly with non-affine data
accesses, since only the DFGL program is processed by the polyhedral frame-
work, not the internal step code).

5 Polyhedral Optimizations for DFGL

In this section, we present the details of our analysis and optimizations for an
input DFGL program, in the context of a polyhedral compilation framework.

5.1 Polyhedral Representation of DFGL Program

This section introduces our approach for creating a polyhedral representation of
a DFGL program. Each step is viewed as a polyhedral statement, for which an
iteration domain is constructed by analyzing the creation of step instances by
the environment and access functions are constructed by analyzing the dataflow
expressions.

SCoP for DFGL Model . As shown in Sect. 2.2, the original SCoP format con-
sists of three components: iteration domain, access relation, and schedule. The
restricted DFGL model defined in Sect. 4.2 allows to seamlessly create the iter-
ation domain to be represented as a polyhedron bounded by affine inequalities,
and the I/O relations of each step instance to be modeled as affine read/write
access relations. Examples of DFGL code fragments and their SCoP representa-
tions are shown below.

[A:i-1,j+1]->(S:i,j)->[B:i,j] ⇔ ASR1 (i, j) = (A, i−1, j+1), ASW1 (i, j)=(B, i, j)

env::(S:{1 .. N},{i .. M}) ⇔ DS = {(i, j) ∈ Z
2 | 1 ≤ i ≤ N ∧ i ≤ j < M}

Instead of specifying the sequential execution order (total order) among all step
instances, the DFGL model enforces ordering constraints via dataflow: a step
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instance is ready to execute only once all of its input items (data elements) are
available. Therefore, the SCoP format specialized for DFGL contains iteration
domains and access functions, but no explicit schedule.

Dependence Computations. To compute polyhedral dependences between any
two step instances, we need to determine their Happens-Before (HB) relation
— i.e., which instance must happen before another [24]. By definition of the
dynamic single assignment form, only flow dependences can exist and any read
to a memory location must necessarily happen after the write to that location.
So we can define the HB relation between instance i of step S and i ′ of step
T as:

HBS→T (i , i ′) ≡ ASWl (i) = ATRm (i ′) ∧ (S �= T ∨ i �= i ′)

This simply captures the ordering constraints of the DFGL model: step instance
i ′ reading an item cannot start before step instance i writing that item com-
pleted, even if step instance i ′ of T appears lexically before instance i of step
S in the DFGL program. According to the definition in Sect. 2.2, dependence
polyhedra between steps S and T are simply expressed as:

DS→T ≡ {(i , i ′) | i ∈ DS ∧ i ′ ∈ DT ∧ HBS→T (i , i ′)}
which captures that i/i ′ is an instance of step S/T , i writes the item read
by i ′ (access equation), and i happens before i ′ (HB relation). Because of the
dynamic single assignment rule, the DFGL model disallows Write-After-Write
dependence and Write-After-Read dependences. The next section outlines how
polyhedral analysis can be used to check of these error cases.

5.2 Legality Analysis

This section introduces the compile-time analyses to verify the legality of a
DFGL program. Enforcing the DFGL semantics, it detects the violation of the
dynamic-single-assignment rule, plus three types of deadlock scenarios.

Violation of the single-assignment rule is equivalent to the existence of Write-
After-Write dependences, and is represented by the following condition, which
indicates that instances i and i ′ write an identical item (data element):

∃i ∈ DS , ∃i ′ ∈ DT : ASWl (i) = ATWm (i ′) ∧ (S �= T ∨ i �= i ′ ∧ l �= m)

Self deadlock cycle is the simplest case of deadlock. An instance i needs to read
an item which is written by i itself, thereby resulting in indefinite blocking.

∃i ∈ DS : ASWl (i) = ASRm (i)

General deadlock cycle is the second of deadlock scenarios, where the depen-
dence chain among multiple step instances creates a cycle. Any instance on the
cycle waits for its predecessor to complete and transitively depends on itself. As
discussed in Sect. 5.3, transformations in the polyhedral model are equivalent
to a multidimensional affine schedule such that, for each pair of instances in
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dependence, the producer is scheduled before the consumer. The existence of
such legal schedule [18] guarantees the absence of general deadlock cycle, and
optimizers are built to produce only legal schedules.

Deadlock due to absence of producer instance is the third deadlock scenario.
Even without a cycle in the dependence chain, it can be possible that a step
instance i ′ needs to read an item that any other step instance does not write.
Detecting this scenario is represented by the following condition, which means
there is no step instance i that writes an item to be read by i ′. Note that the
items written/read by the environment env are also expressed as domains and
access relations (Sect. 4.1)3.

∃i ′ ∈ DT : ¬ (∃i ∈ DS : ASWl (i) = ATRm (i ′))

For instance, the following compile-time error message is shown if we remove the
second line “(corner:i,j) -> [A:i,j];” in Fig. 2:
Legality check: Deadlock due to no producer of (main center:1,1)

5.3 Transformations

Given a set of dependence polyhedra {D∗→∗} that captures all program depen-
dences, the constraints on valid schedules are:

ΘS(i) ≺ ΘT (i ′), (i , i ′) ∈ DS→T , DS→T ∈ {D∗→∗}
For any dependence source instance i of step S and target instance i ′ of step
T , i is given a lexicographically smaller time-stamp than i ′. Because of the
translation of the DFGL program into a complete polyhedral description, off-
the-shelf polyhedral optimizers can be used to generate imperative code (i.e., C
code) performing the same computation as described in the DFGL program. This
optimization phase selects a valid schedule for each step based on performance
heuristics — maximizing objective functions. There have been a variety of poly-
hedral optimizers in past work with different strategies and objective functions
e.g., [11,33]. The schedule is then implemented to scan the iteration domains in
the specified order, and a syntactic loop-based code structure is produced using
polyhedral code generation [8].

We used the PolyAST [33] framework to perform loop optimizations, where
the dependence information provided by the proposed approach is passed as
input. PolyAST employs a hybrid approach of polyhedral and AST-based com-
pilations; it detects reduction and doacross parallelism [17] in addition to regular
doall parallelism. In the code generation stage, doacross parallelism can be effi-
ciently expressed using the proposed doacross pragmas in OpenMP 4.1 [28,34].
These pragmas allow for fine-grained synchronization in multidimensional loop
nests, using an efficient synchronization library [38].
3 In future work, we may consider the possibility of not treating this case as an error

condition by assuming that each data item that is not performed in the DFGL region
has a initializing write that is instead performed by the environment.
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6 Experimental Results

This section reports the performance results of the proposed DFGL optimization
framework obtained on two platforms: (1) an IBM POWER7: node with four
eight-core POWER7 chips running at 3.86 GHz, and (2) an Intel Westmere: node
with 12 processor cores per node (Intel Xeon X5660) running at 2.83 GHz. For
benchmarks, we use Smith-Waterman, Cholesky Factorization, LULESH and six
stencil kernels from PolyBench [25].

Smith-Waterman is used as our motivating example (Sect. 3). We run the
alignment algorithm for 2 strings of size 100,000 each, with a tile size varying
between 16 and 1024 in each dimension. As the baseline OpenMP implementa-
tion, we manually provided a wavefront doall version via loop skewing. Figure 6
shows the speedup results on our two test platforms, relative to the sequential
implementation. We observe that the performance varies depending on the tile
size chosen: for Westmere the best tile size is 1024, while for POWER7 the
best tile size is 64. However our approach gives a big performance improvement
compared with the skewed wavefront OpenMP implementation: up to 6.9× on
Westmere and up to 2.3× on POWER7 for the maximum number of cores, due
to cache locality enhancement via tiling and efficient doacross synchronizations.

Table 1. Overall and synchronization time (Smith-Waterman onPower7 with 32 cores)

OpenMP DFGL-16 DFGL-64 DFGL-256 DFGL-512 DFGL-1024

Overall 9.863 s 4.508 s 4.188 s 4.283 s 4.571 s 5.047 s

Synch. 1.720 s 0.482 s 0.163 s 0.128 s 0.129 s 0.143 s

To evaluate the efficiency of doacross (point-to-point synchronizations) and
wavefront doall (barriers), we provided variants that removes all computations
in the kerenel and only contains synchronizations. Table 1 shows the synchro-
nization and overall execution times in second. When using 32 cores, the syn-
chronization overheads for doacross with tile size = 64 and wavefront doall is
0.163[sec] and 1.72[sec], respectively. In addition to this synchronization effi-
ciency, loop tiling by the optimization framework enhanced data locality; overall
improvement over the OpenMP variant is 2.36× when using 32 cores and tile
size = 64.

Cholesky Factorization is a linear algebra benchmark that decomposes a sym-
metric positive definite matrix into a lower triangular matrix and its transpose.
The input matrix size is 2000 × 2000 and the generated code has 2D loop tiling
with tile size varying between 4 and 32. In Fig. 7 that even though this app-
roach does not yield a large speedup, it still gives improvement compared to the
OpenMP implementation: 1.4× on Westmere and 3.0× on POWER7.

As reported in previous work [13], the combination of data tiling (layout trans-
formation) and iteration tiling is a key technique for Cholesky Factorization while
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(a) Intel Westmere (b) IBM POWER7

Fig. 6. Smith-Waterman using 2 sequences of 100 k elements each. Results are for
DFGL optimized code with loop tiling using tile sizes between 16 and 1024, and
OpenMP baseline with parallelism obtained via loop skewing.

the current toolchain supports only iteration tiling. Alternatively, we manually
implemented 50 × 50 iteration and data tiling within the user-provided steps and
underlying data layout; the input DFGL is unchanged and our toolchain gener-
ated the same inter-step parallel code via doacross. This version brought signifi-
cant improvements due to optimized cache locality, up to 15× on Westmere and
up to 10.8× on POWER7 over standard OpenMP implementation. Furthermore,
it gives on par performance with Parallel Intel MKL on 12 cores, on Westmere4

and outperforms ATLAS on POWER75 on more than 4 cores.
These results further motivate our work, since the application tuning can be

accomplished both by the polyhedral transformations and the user by replac-
ing the steps with optimized versions. For example, in the case of cholesky, it
is possible to call optimized MKL/ATLAS kernels inside the user steps. In our
results, these steps are regular sequential steps and all parallelism comes from
the OpenMP code generated by the polyhedral tools. Further, since DFGL can
be used as an embedded DSL, the OpenMP code being generated can be incor-
porated in larger applications and coupled with optimized user steps.

LULESH is a benchmark needed for modeling hydrodynamics [1]. It approx-
imates the hydrodynamics equations discretely by partitioning the spatial prob-
lem domain into a collection of volumetric elements defined by a mesh. In this
implementation each element is defined as a cube, while each node on the mesh
is a point where mesh lines intersect and a corner to 4 neighboring cubes. The
mesh is modeled as a 3D space with N3 elements and (N +1)3 nodes. The bench-
mark uses an iterative approach to converge to a stable state. We pre-tested the
application and saw a convergence after 47 iterations; thus in our results we use
a fixed number of 50 iterations for simplicity.

Figure 8 gives the results for a 1003 space domain and our toolchain tiled both
the time loop and the 3D loop nest corresponding to the space. We see that even

4 MKL is the best tuned library for Intel platforms. We compare against Sequential
and Parallel MKL.

5 On POWER7 we use ATLAS — the sequential library — as MKL cannot run on
POWER7, and a parallel library was not available.
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(a) Intel Westmere (b) IBM POWER7

Fig. 7. Cholesky Factorization using 2000 × 2000 matrix. Results are for loop tiling
using tile sizes between 4 and 32, OpenMP parallelism, data tiling resulting of the
inner steps and reference MKL/Atlas implementations.

with a time tile size of 2, this leaves only 25 parallel iterations at the outermost
doacross loop, which for the POWER7 in particular leads to a smaller speedup.
The best results are obtained with no time tiling and a space tile of 83, on both
Westmere and POWER7. We also observe a significant increase in performance
compared with the reference C++ implementation which uses OpenMP [22].

(a) Intel Westmere (b) IBM POWER7

Fig. 8. LULESH for 50 time iterations and a 1003 space domain. Results are for time
loop tiling with tiles 1,2 and space loop tiles 2,4,8,16, and reference C++ OpenMP
implementation.

Finally, we summarize results for the stencil benchmarks from the Poly-
bench suite [25]: Jacobi-2D, Jacobi-1D, Seidel-2D, FDTD (Finite Different Time
Domain), FDTD-APML (FDTD using Anisotropic Perfectly Matched Layer)
and ADI (Alternating Direction Implicit solver) in Fig. 9 when using the maxi-
mum number of cores on each platform. We created the baseline OpenMP imple-
mentations in a standard manner: parallelism added at the outer most loop for
fully parallel loops and after skewing for loops with loop-carried dependences.
We did not add manual polyhedral optimizations.

The results show that the best tile sizes vary between platforms: on the
Westmere the best results are generally for the larger time tile (4) and the
largest space tile size (128), while for the POWER7 the best results are for the
smaller time tile (2) and the smallest space tile (16). We also note that the results
obtained using the DFGL toolchain outperform the OpenMP implementations
for most cases, with up to 1.8× speedups.
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(a) Intel Westmere, 12 cores (b) IBM POWER7, 32 cores

Fig. 9. Stencil benchmarks from the Polybench suite. Results compare DFGL tiling
with standard OpenMP parallel versions.

7 Related Work

DFGL has its roots in Intel’s Concurrent Collections (CnC) programming model
[12,21], a macro-dataflow model which provides a separation of concerns between
the high level problem specification and the low level implementation. The orig-
inal CnC implementation did not offer a means for definiting dependences at a
high level, and an extended CnC model proposed for mapping onto heteroge-
neous processors [32] became the foundation for DFGL.

Compared to past work related to CnC, DFGL pushes the use of a high-level
data-flow model as an embedded DSL for enabling robust compiler optimizations
using a state-of-the-art polyhedral compilation framework that is capable of
generating code for the new OpenMP 4.1 doacross construct. In addition, to
the best of our knowledge, this work is the first to use polyhedral analyses to
detect potential deadlocks and violations of the dynamic single assignment rule
in a dataflow graph program specification. Other data-flow models also use a
parallel underlying runtime to achieve performance, either a threading library,
such as pthreads used in TFlux [35], or a task library, such as TBB used in
Intel’s CnC, or a parallel language such as Cilk used in Nabbit [6]. Legion [9] is
another language which aims to increase programmability, however it requires
an initial sequential specification of a program, similar to the input assumed
by polyhedral compiler frameworks. DFGL eases programmability by separating
the application description from its concrete implementation, and ensures that
the optimized parallel code generated is not handled by the user. In addition,
DFGL regions can be integrated in large scale applications as an embedded DSL,
and can be coupled with optimized step code implementations or library calls.

Domain specific languages aim to give a high-level view of the applications
and to ease programmability but are generally restricted to particular sets of
problems, such as stencil computations [26] or graph processing problems [20]. In
contrast, DFGL aims to combine the programmability benefits of DSLs with the
optimizability of polyhedral regions, by using an approach that enables portable
specifications of parallel kernels. Alpha [42] is a language which can be viewed as
an eDSL for the polyhedral model. However the specification for Alpha is that
of a full language, whereas DFGL can be composed with optimized step code
defined in other languages, as long as these can be built together.
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A number of papers addressed data-flow analysis of parallel programs using
the polyhedral model, including extensions of array data-flow analysis to data-
parallel and/or task-parallel programs [16,41]. These works concentrate on analy-
sis whereas our main focus is on transformations of macro-dataflow programs.
Kong et al. [23] applied polyhedral analysis and transformations for the Open-
Stream language, a representative dataflow task-parallel language with explicit
intertask dependences and a lightweight runtime. PolyGlot [10] was the first
end-to-end polyhedral optimization framework for pure dataflow model such
as LabVIEW, which describes streaming parallelism via wires (edges) among
source, sink, and computation nodes. On the other hand, our framework aims
at optimizing macro-dataflow model, where asynchronous tasks are coordinated
via input/output variables in data-driven manner.

8 Conclusions

In this paper, we proposed an optimization framework that uses as input the
DFGL model, a dataflow graph representation that results in high performance
generated by polyhedral tools while still allowing the programmer to write gen-
eral (non-affine) code within computation steps. We outlined the language fea-
tures of DFGL and presented our implementation of the model, which provides
a tool that reads in the DFGL specification and generates the SCoP format for
polyhedral transformations. We then described the technical details for comput-
ing dependences based on the access functions and domain, as described in the
SCoP format, using the dynamic single assignment property of DFGL. Further
we described compile-time analyses to verify the legality of DFGL programs
by checking for potential dynamic single assignment violations and potential
deadlocks. We have shown experimental results for our implementation of the
DFGL model, which offers good scalability for complex graphs, and can out-
perform standard OpenMP alternatives by up to 6.9×. The current restrictions
on DFGL are inherited from the polyhedral model itself and should be also
addressed in future work [14]. This work focuses on the C language; future work
could consider C++ notational variants.
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Abstract. Library and language support for scheduling non-blocking
tasks has greatly improved, as have lightweight (user) threading pack-
ages. However, there is a significant gap between the two developments.
In previous work—and in today’s software packages—lightweight thread
creation incurs much larger overheads than tasking libraries, even on
tasks that end up never blocking. This limitation can be removed. To
that end, we describe an extension to the Intel Cilk Plus runtime system,
Concurrent Cilk, where tasks are lazily promoted to threads. Concurrent
Cilk removes the overhead of thread creation on threads which end up
calling no blocking operations, and is the first system to do so for C/C++

with legacy support (standard calling conventions and stack representa-
tions). We demonstrate that Concurrent Cilk adds negligible overhead
to existing Cilk programs, while its promoted threads remain more effi-
cient than OS threads in terms of context-switch overhead and blocking
communication. Further, it enables development of blocking data struc-
tures that create non-fork-join dependence graphs—which can expose
more parallelism, and better supports data-driven computations waiting
on results from remote devices.

1 Introduction

Both task-parallelism [1,11,13,15] and lightweight threading [20] libraries
have become popular for different kinds of applications. The key difference
between a task and a thread is that threads may block—for example when
performing IO—and then resume again. Lightweight threading libraries usu-
ally require cooperative multitasking but can, in return, support over a million
threads, which is naturally useful for applications such as servers that involve
concurrent IO-driven computations. Tasks, in contrast, are of finite duration and
do not block. Indeed the non-blocking assumption is baked deeply into libraries
such as TBB (Threading Building Blocks [15]) and language extensions such as
Cilk [4]. Tasks are executed on shared worker threads where blocking such a
thread is a violation of the contract between programmer and library, which
can cause subtle deadlocks, as well as a loss of parallel efficiency.

If the no-blocking-guarantee can be met, then task-parallelism libraries
offer an order of magnitude lower overhead for creating parallel tasks (“many
c© Springer International Publishing Switzerland 2016
X. Shen et al. (Eds.): LCPC 2015, LNCS 9519, pp. 73–90, 2016.
DOI: 10.1007/978-3-319-29778-1 5
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tasking” rather than “multi-threading”). Cilk [4], in particular, is well known
for its low-overhead spawn feature where the overhead of creating a parallel fiber
with cilk_spawn f(x) is as little as 2–5 times the overhead of a regular function
call, f(x). The key to this low-overhead is that Cilk fibers are essentially lazily
parallel: fibers execute sequentially, exposing the continuation of the parallel call
with a minimum of overhead, and lazily promoting the continuation to a parallel
continuation only when work-stealing occurs—and even then only using shared
resources, not fiber-private stacks.

1. 
Sequential

2. Stolen

3. 
Blockable

4. Full 
OS ThreadsHaskell 

Threads

goroutines,

Qthreads
Haskell sparks

Cilk spawns,

Concurrent Cilk

1. latent parallelism 2. actual parallelism 3. concurrency

Automatic 
Promotions
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Fig. 1. State transitions possible for a fiber
in each of several existing systems. At level
(1), the fiber executes entirely within the
stack of its caller. Work stealing transi-
tions to (2) where a pre-existing system
worker stack (allocated at startup) is used
to execute the continuation of f in parallel.
A blocked fiber requires additional storage
for its state (3). Finally, blocking on under-
lying OS calls requires an OS thread (4).

Because a traditional Cilk pro-
gram must run even with sequen-
tial semantics—spawned fibers cannot
serve the role of threads in the sense
that they cannot be used for manag-
ing concurrent IO. That is, even con-
tinuations lazily promoted to parallel
status, are not truly concurrent—they
don’t have their own stacks. It is this
extra lazy promotion we add in Con-
current Cilk.

To the programmer, a cilk_spawn

and a thread spawn look very similar,
but current limitations require know-
ing at the point of the call, which vari-
ant will be required: will the spawned
computation need to suspend, and
thus require its own stack? This deci-
sion point remains even in high-level
languages designed with both paral-
lelism and concurrency in mind, which
support both tasks and threads using separate language mechanisms. For exam-
ple, the Glasgow Haskell Compiler supports “sparks” (tasks) and language-level
“IO threads” with different APIs [13].

Concurrent Cilk, on the other hand, extends the Cilk runtime interface with
new primitives for pausing a fiber and returning a handle1 that will allow other
fibers (or Pthreads) to unpause the computation, and extends the states through
which a fiber is promoted with a third, fully concurrent, state:

1. Executing sequentially, continuation uninstantiated
2. Executing in parallel with continuation, shares stacks
3. Fully concurrent, private stack, able to pause/resume

1 This handle is similar to a [parallel] one-shot continuation. Continuations are well
studied control constructs [9,17] and known to be sufficient to build cooperative
threading (coroutines) [9] as well as blocking data structures that enable, for exam-
ple, stream-processing with back-pressure.
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That is, Concurrent Cilk initially executes fibers sequentially, lazily pro-
moting them to “parallel work” during stealing, and lazily promoting them to
“threads” only when necessary (Fig. 1). It then becomes possible to use the
cilk_spawn feature for all parallelism and concurrency, even if it is not known
(or even knowable) at the point of its creation whether the fiber will need to
block—for example, for a computation on a server to wait on further commu-
nications with the client, or for a ray tracer to fetch remote data to compute a
particular pixel.

Previous attempts to provide blocking, lightweight fibers in C have either
required changing calling conventions and breaking legacy binary support [19],
or create a full [linear] call-stack for each fiber [20]. Concurrent Cilk is the first
system to enable lightweight threads in C, with legacy support, and memory-use
(number of stacks) proportional to blocked fibers, not total spawned fibers.

On the other hand, for parallel languages with specialized compiler support,
and no backwards compatibility concerns (linear stacks), lazy thread spawning
has been explored, namely in the context of Id90 [7]. (Although Id90 used only
states (1) and (3) above, not the full three-state algorithm.) And yet today,
Concurrent Cilk is, to our knowledge, the only threading system that uses this
algorithm, even including languages like Go, Haskell, and Erlang with good
lightweight threading support. Nevertheless, with the prevalence of asynchronous
workflows, especially in the web-services domain, we argue that this is an idea
whose time has come. It provides a better abstraction to the programmer—with
a single logical spawn construct replacing careful reasoning about non-blocking
tasks, shared threads, and user threads—and it is implementable even in mature
systems like Intel Cilk.

In this paper, we make the following contributions:

– We present the first system for unified lightweight tasking and threading that
supports C/C++ code and existing binaries. We describe the changes that are
necessary to add concurrency constructs (pause/resume a parallel fiber) to a
mature, commercial parallelism framework, and we argue that other many-
tasking frameworks could likewise adopt lazy-promotion of tasks to threads.

– We show how to build blocking data structures (e.g. IVars, channels) on top
of the core Concurrent Cilk pause/resume primitives.

– We use Linux’s epoll mechanism to build a Cilk IO library that provides
variants of POSIX routines like read, write, and accept which block only the
current Cilk fiber, and not the OS thread.

– We evaluate Concurrent Cilk in terms of (1) additional runtime-system over-
head across a set of applications (Sect. 6.1); (2) opportunities for improved
performance by sync elision (Sect. 6.3); (3) a study of injecting blocking IO
in parallel applications, or, conversely, injecting parallel computation inside
IO-driven server applications (Sect. 6.4).

2 Background and Motivation

Cilk itself dates from 1996 [4]; it is a simple language extension that adds par-
allel subroutine calls to C/C++. Only two constructs make up the core of Cilk:
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cilk_spawn for launching parallel subroutine calls, and cilk_sync for waiting on
outstanding calls (with an implicit cilk_sync at the end of each function body).
For example, here is a common scheduler microbenchmark, parallel fibonacci:

long parfib(int n) {

if (n<2) return 1;

long x = cilk_spawn parfib(n-1);

long y = parfib(n-2);

cilk_sync;

return x+y;

}

Logically, each cilk_spawn creates
a virtual thread, i.e. a fiber. Cilk
then multiplexes these fibers on any
number of OS worker threads, deter-
mined at runtime. Cilk only instan-
tiates fibers in parallel when random
work-stealing occurs.2 Thus running
parfib(42) does not create stack
space for half a billion fibers, rather it typically uses one worker thread for
each processor or core.

Cilk is surprisingly successful as a language extension. This appears to be
largely due to (1) Cilk’s extreme simplicity, and (2) the legacy support in Intel
Cilk Plus. That is, Cilk programs can be linked with previously compiled libraries
and legacy code may even call Cilk functions through function pointers.

The work-stealing model supported by Cilk has been adopted by many other
C/C++ libraries (Intel TBB, Microsoft TPL, and others). Unfortunately, so has
its lack of support for blocking operations within parallel tasks. None of these
C/C++ runtime systems can react to a task blocking—whether on a system call
or an in-memory data structure. For example, TBB blocking data structures
(e.g. queues) are not integrated with TBB task scheduling.

2.1 Blocking Deep in a Parallel Application

To illustrate the problem Concurrent Cilk solves, we begin by considering adding
network IO to a plain Cilk application. Take, for example, software that renders
movie frames via ray tracing.3 A rendering process runs on each machine in
a render farm, and may use all the processors/cores within that machine. Let
us suppose the software evolved from a sequential application, but has been
parallelized using Cilk constructs.

Somewhere in our rendering application we might expect to see a parallel
loop that launches a ray for each pixel we are interested in. Contemporary Cilk
implementations provide a cilk_for drop-in replacement for for, which is imple-
mented in terms of cilk_spawn and cilk_sync.

2 Cilk is a work first system, which means that the thread that executes spawn f will
begin executing f immediately; it is the continuation of spawn that is exposed for
stealing.

3 Ray tracing follows an imaginary line from each pixel in the image into the scene to
see what objects are encountered, rather than starting with the objects and drawing
(rasterizing) them onto the screen.
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sort(pix_groups);

cilk_for (i < start; i<end; i++){

. . . cast_ray(pix_groups[i]) . . .
}

Suppose now that in this context—
deeply nested inside a series of par-
allel and sequential function calls—we
encounter a situation where the ray has
left the local virtual space, whose tex-
tures and geometry are loaded on the
current machine, and entered an adjacent area stored elsewhere in networked
storage. In this hypothetical rendering application, if every ray rendered had its
own Pthread (which is impractical), then it would be fine to block that thread
by directly making a network request as a system call.

// Deep in the stack,

// in the midst of rendering:

void handle_escaped(ray r, id rsrc){

blob f = webapi.request(rsrc);

// Block a while here,

// waiting on the network . . .
load_into_cache(f);

resume_ray(r);

}

But if Cilk has been used to par-
allelize the application, the above
is very dangerous indeed. First,
because there is generally one Cilk
worker thread per core, blocking a
worker thread often leaves a core
idle. Second, any attempts to hold
locks or block on external events
invalidates the traditional space and
time bounds on Cilk executions [4].
Finally, blocking calls can deadlock the system if there are enough such calls to
stall all Cilk worker threads, starving other computations that might proceed—
including, potentially, the one that would unblock the others!

Attempted Fix 1: Avoid Blocking. To avoid blocking within a parallel task,
how can the application be refactored? If the need for IO operations is discovered
dynamically (as in ray tracing), there are two options: (1) fork a Pthread at the
point where IO needs to occur, passing an object bundling up the rest of the
computation that needs to occur, after the IO completes;4 or (2) return failure
for the parallel task, wait until the parallel region is finished, then perform IO
and try again (a trampoline). Because Cilk allows (strictly) nested parallelism,
deferring actions until the end of a parallel region potentially requires restructur-
ing the control-flow of the entire application—pulling all potential-IO in deeply
nested contexts to the application’s “outer loop”.

Attempted Fix 2: Overprovision to Tolerate Blocked Workers. Of
course, it is possible to provision additional Cilk workers, say, 2P or 4P (where
P is the number of processors or cores). This would indeed hide some number of
blocking operations, keeping processors from going idle, at the cost of additional
memory usage and some inefficiency from over-subscription. Unfortunately, this
puts the requirements on the user to understand the global pattern of blocking
operations at a given point in program execution, which is especially difficult
within a parallel region. Moreover, if blocked threads are interdependent on one
another—for example using in-memory blocking data-structures for inter-fiber

4 In other words, manually converting the application to continuation passing style
(CPS).
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communication—then the maximum possible simultaneously blocked computa-
tions is key to deadlock avoidance. In general, violating the Cilk scheduler’s
contract (by blocking its workers) is a dangerous action that cannot be used
composably or abstracted inside libraries.

Thus we argue that, if Cilk fibers must block their host threads, then it is
better to create replacement worker threads on demand (as Cilk instantiates
fibers on demand, upon stealing) as an integral part of the runtime system.
Hence Concurrent Cilk.

3 Programming Model

Concurrent Cilk follows the Cilk tradition of using a small set of powerful, com-
posable primitives, which can then form the basis for higher-level abstractions or
syntactic sugar. The core primitives for Concurrent Cilk are pause and resume
on fibers, and while library implementers directly use these primitives, most end
users will prefer to use higher-level data structures. Thus we begin our exposition
of the programming model using one such high-level structure—the IVar—as an
example, and then we return to the lower level API later on in this section.

An IVar is a single-assignment data structure that exists in either an empty
or full state. The basic interface is:

void ivar_clear(ivar*);

ivar_payload_t ivar_get(ivar*);

void ivar_put(ivar*, ivar_payload_t);

New IVars are stack- or heap-allocated and then set to the empty state with
ivar_clear.5 Get operations on an empty IVar are blocking—they pause the
current fiber until the IVar becomes full. Once an IVar has transitioned to a full
state, readers are woken so they can read and return the IVar’s contents. IVars
do not allow emptying an already full IVar.

Further, IVars are only one representative example of a synchronization
structure built with pausable fibers—MVars would allow synchronized empty-
ing and refilling of the location, or a bounded queue with blocking enqueues and
dequeues.

Pausing the Fiber. In fact, all these data structures make use of the underlying
Concurrent Cilk API in the same way. Here we show a simplified API, which
will be optimized shortly, but which demonstrates two phase pausing, as follows.

1. pause_fiber() – capture the current context (setjmp), and begin the process
of shelving the current fiber.

2. commit_pause() – jump to the scheduler to find other work.

5 Here, and in the rest of this paper, we omit the prefix __cilkrts_ which is found
in most of the symbols in CilkPlus, and our fork, Concurrent Cilk https://github.
com/iu-parfunc/concurrent cilk.
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In between these two operations, the fiber that is about to go to sleep has
time to store a reference to itself inside a data structure. Without this step, it
would not be possible for other computations to know that the fiber is asleep,
and wake it. In the case of IVars, each empty IVar with blocked readers stores a
pointer to a waitlist, which will be discussed in the next section. Further, as an
implementation note, the pause_fiber routine must be implemented as an inline
function or preprocessor macro—so that it calls setjmp from within the correct
stack frame.

Waking the Fiber. The job for the ivar_put operation is simpler: attempt a
compare and swap to fill the IVar, and retrieve the waitlist at the same time. If
it finds the IVar already full, it errors. When put processes the waitlist, it uses
a third Concurrent Cilk API call, which we introduce here, that has the effect
of enqueuing the paused fiber in a ready-queue local to the core on which it was
paused.

3. wakeup_fiber(w) – take the worker structure, and enqueue it in the readylist.

Naturally, thread wakeup and migration policies are a trade-off: depending
on the size and reuse distance of the working set for the blocked computation,
relative to the amount data communicated to it through the IVar. It could be
best to wake the fiber either where it paused or where it was woken, respectively.
We chose the former as our default.

4 Another High-Level Interface: I/O Library

Before delving deeper into the low-level Concurrent Cilk API and scheduler
implementation, we first describe another abstraction layered on top of Concur-
rent Cilk, one which provides a programmer-facing abstraction that is key to the
goal of Concurrent Cilk: blocking I/O calls intermingled with parallel tasks.

The Cilk I/O library we implemented provides a way for fibers to block—not
just on application-internal events like another fiber writing an IVar—but on
external events such as network communication. The programmer-visible API
matches the normal POSIX API with functions prefixed with cilk_. Except, of
course, blocking semantics are achieved, not by blocking the entire OS thread,
but rather the Concurrent Cilk fiber. Our current implementation uses the
Libevent library, which provides an abstraction over OS mechanisms like Linux’s
epoll. Libevent provides a programming interface for registering events with
associated callbacks. It raises the abstraction level from raw epoll by, for exam-
ple, handling the event loop(s) internally.

An initialization routine, cilk_io_init, needs to be called before calling any
IO methods. This launches a new daemon thread to run the event loop. The
cilk_accept, cilk_read, cilk_write, and cilk_sleep procedures register corre-
sponding events to the event loop before yielding the control to a different fiber
by blocking on an IVar read. In this, their implementations are all similar to
the ivar_get implementation. Accordingly, ivar_put is performed by the event
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callback, running on the daemon thread containing the event loop. Note, how-
ever, that we do not need to worry about running computation on the event
loop thread (which would delay it from processing events)—ivar_puts are cheap
and constant time, only calling wakeup_fiber() to resume computation. As we
saw before wakeup_fiber() always resumes the fiber on the worker thread where
it went to sleep, which can never be the event loop thread.

In Sect. 6, we will return to the topic of the IO library as a foundation for
server applications. Finally, note that it would be possible to use LD_PRELOAD or
related methods to patch in Cilk IO calls instead of standard system calls, but
this is beyond the scope of this paper; it could be built separately and on top of
what we provide.

5 Low-Level Implementation and Scheduler

Cilk workers live in a global array which is accessed during the work-stealing
process. When a worker becomes starved for work, another worker is then cho-
sen, at random, from the global array and if there is any work available, the
thief steals from the currently busy worker (victim) and computes on its behalf.
There have been several implementations of Cilk, and other papers describe their
implementation and interfaces in detail, from the early MIT versions of Cilk [6],
to the binary ABI specification of Intel Cilk Plus [2]. Thus we do not go into
detail here.

5.1 Adding the Concurrent Cilk Extensions

Cilk Schedulerspawn
sync

read
write

accept

get
put

clear

commit_pause
rollback_pause

get_replacement

id
work deque
local state

global state
current stack frame
system-dependent 

state
readylist
pauselist
freelist

paused context

Cilk API

Cilk IO

Cilk IVar

Concurrent Cilk

Cilk Worker

Fig. 2. The architecture of the modified Con-
current Cilk runtime system. Also pictured is
the included, but optional, Cilk IO library.
The bold red entries in the worker structure
represent Concurrent Cilk extensions (Color
figure online).

The idea of Concurrent Cilk is sim-
ple; however, the Cilk Plus runtime
system is a complex and compara-
tively difficult to modify artifact, so
implementation must proceed with
care. Our basic approach is that
if a Cilk worker becomes blocked,
detach the worker from its OS
thread6 and substitute a replace-
ment worker that then steals com-
putation from any of the workers
in the global worker array. When
the blocking operation has finished,
the worker is restored to an OS
thread at the next opportunity and
the replacement worker is cached
for future use. In this way, all OS
threads managed by the Cilk runtime are kept active. This strategy is similar

6 A Cilk worker represents a thread local state which sits on top of an OS level thread.
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to other lightweight threading systems [8,13,20], except in that Concurrent Cilk
“threads” (fibers) start out without stacks of their own.

As pictured in Fig. 2, most Cilk worker state is thread-local—including a
stack of stealable Cilk stack frames, a linear C stack, and many book-keeping
and synchronization related fields. A cache of stacks is kept both at the global and
thread-local levels, with local caches “filling” and spilling over into the shared
pool. Concurrent Cilk adds three main additional fields:

1. Paused list – workers that cannot currently run
2. Ready list – workers that have unblocked and are ready for execution
3. Free list – an additional cache of workers that previously were paused and

now can be used as replacements for newly paused fibers

Each of the lists above is currently implemented as a lock-free Michael and
Scott queue [14]. This gives a standard round-robin execution order to ready-
threads. When the current fiber pauses, work-stealing only occurs if there are
not already local fibers on the ready list.

5.2 Scheduler Modifications

The additional Concurrent Cilk data structures described above are primarily
touched by the pause, commit pause, and wakeup routines, and so they do not
interfere with traditional Cilk programs that never block. However, there must
be some modification of the core scheduler loop so as to be able to run work in
the ready list.

The core scheduler algorithm picks random victims and attempts to steal in
a loop, eventually going to sleep temporarily if there is no work available. We
inject checks for the extra workers in two places:

– In the stealing routine – if a first steal attempt fails, rather than moving on
from a victim, we attempt to steal work from any blocked workers on the
same core (which may also have exposed stealable continuations before being
blocked).

– At the top of the scheduler loop – we do not engage in work stealing if there
are already threads in the ready list prepared to run. In this way, cooperative
multi-tasking is possible in which no work-stealing is performed, and control
transfers directly from thread to thread as in other lightweight threading
systems. To make this maximally efficient, however, in the next Section we
will have to extend the pause/wakeup API from the simplified form we have
seen. Preferentially handling ready (local) threads over stealable work has
precedent in existing (multi-paradigm) parallel language runtimes [13] that
prioritize user-created, explicit concurrency over exploiting latent parallelism.

The above modifications change how we find victims, while at the same time
we retain the global (static) array of workers as it is in Intel Cilk Plus—as
the starting point for all work-stealing. In Concurrent Cilk the global array

adrien.cassagne@inria.fr



82 C.S. Zakian et al.

represents the active workers, of which there are the same number in Concurrent
Cilk and Cilk. To maintain this invariant, we must necessarily rotate out which
workers reside in the global array. Whenever one worker pauses and activates
another, that replacement becomes “on top”.

In Concurrent Cilk, paused or ready fibers may also have exposed stealable
continuations, that can be executed in parallel by a thief.7 In terms of prioritizing
different work sources, we conjecture that it remains best to steal from active
workers first. Their working sets are more likely to be in a shared level of
cache. For that reason we only check paused fibers when the active one yields
no work.

From a software engineering perspective, leaving the global array of workers
in place and fixed size enables us to avoid breaking a system wide invariant in the
Cilk Plus runtime system, which would require substantial re-engineering. At the
same time, by modifying work-stealing to look deeper inside the list of paused
and ready workers, we retain a liveness guarantee for parallel continuations: If
a physical worker thread is idle, all logically parallel work items are reachable
by stealing. Any violation of this guarantee could greatly reduce the parallel
efficiency of an application in worst-case scenarios.

5.3 Optimized Pause/Resume Interface

Running Disconnected

PausedReady

raw_pause_fiber()

get_replacement
_worker()

wakeup_fiber()

rollback_pause()

switchto_
fiber()

Fig. 3. Transitions in the state of a worker.
Disconnected is a temporary invalid state,
which requires either rollback or switching
to a replacement to restore to a good state.

Before proceeding to evaluation, there
is one more implementation issue
to address that can significantly
improve performance. The two-phase
pausing process described above
(pause_fiber(), commit_pause(w)) does
not specify where the current thread
yields control to upon commit_pause for
the simple reason that it always jumps
to the scheduler. When we round-robin
threads through a given core, it is more
efficient if one thread can long-jump
directly to the next one.

Like other library interfaces (e.g., Boost smart/intrusive pointers) we provide
both a convenient interface, and a more “intrusive” but performant interface,
which requires that the API client assume more of the responsibility. This takes
two forms.

First, as promised, we enable direct longjmp between threads, but at the
expense of replacing commit_pause with a multiple calls in a finer grained
interface.

7 The original proof of Cilk’s space and time bounds relies on the critical path of the
computation remaining always accessible in this way. Non-uniform probabilities in
work-stealing are a concern to some authors of Cilk.
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A get_replacement function returns a pointer to the replacement rather than
jumping to the scheduler. This replacement may enter the scheduler but it could
also go directly to another thread. It becomes the client’s responsibility to dis-
patch to the replacement with switchto_fiber:

1. raw_pause_fiber(jmp_buf*)

2. get_replacement(worker*, jmp_buf*)

3. switchto_fiber(worker*, worker*)

OR
rollback_pause(worker*, worker*)

The protocol is that calling (1)
by itself is fine, but after calling
(2), one of the options in (3) must
be called to restore the worker to
a good state (Fig. 3). If the lat-
ter (rollback_pause) is chosen, that
simply rolls back the state of the current thread and current worker to before
the call sequence began at (1).

In this API we can also see the second way in which we place additional
obligations on the client: raw_pause_fiber also takes a jmp_buf* argument. The
principle here is the same as with the IVar’s waitlist—each blocked worker has
a full stack, so it is possible to avoid dynamic memory allocation by making
good use of this stack space, including, in this case, stack-allocating the jmp_buf

that will enable the fiber to later resume. Thus all paused stacks store their
own register context for later reenabling them after wakeup_fiber is called. This
optimized, fine-grained version of the pausing API is what we use to implement
our current IVar and Cilk IO libraries which we evaluate in the next section.

6 Evaluation

Because Concurrent Cilk proposes a new API, it is not sufficient to run an
existing suite of Cilk benchmarks. Thus to evaluate Concurrent Cilk we examine
each of its (potential) pros and cons, and design an experiment to test that
feature.

– Possible Con: overhead on applications that don’t use Concurrent Cilk.
– Possible Pro: lower fork overhead than eager lightweight threading packages.
– Possible Pro: sync elision – express non-fork-join dependence structures
– Possible Pro: better utilization of cores; no idleness on blocking
– Possible Pro: simpler programming model with uniform construct for spawn-

ing tasks and threads.

In this section, we characterize the overhead of Concurrent Cilk’s extensions
to the Cilk runtime through several scheduling microbenchmarks. We further
compare the performance and scalability of Concurrent Cilk’s blocking, context-
switching and unblocking mechanisms through a performance shootout with
other task runtime systems. The plots include min/max error bars with three
trials.

The overhead tests in Sect. 6.1 and the scheduling microbenchmarks in
Sect. 6.2 were run on a Dell PowerEdge R720 node equipped with two 8-core
2.6 GHz Intel Xeon E5-2670 processors (16 cores in total, and hyperthreading
enabled) and 32 GB memory was used. The operating system used was Ubuntu
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Fig. 4. The overhead of adding Con-
current Cilk to the Cilk scheduler. The
Y axis is the speedup/slowdown fac-
tor (higher better), and the X axis is
the count of benchmarks. Each color
represents one of the benchmarks from
the set of regression tests, and for each
benchmark there is a different bubble
for each thread setting, where larger
bubbles imply more threads (Color
figure online).
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Fig. 5. The effect of perturbing exist-
ing computational kernels with simu-
lated network dependencies. We sleep
on a timer (either the OS thread or
using epoll through the Cilk IO library)
to simulate these network dependen-
cies. Perturbations are random, and
calibrated to happen for 50 % of total
CPU time.

Linux 12.04.5 with kernel version 3.2.0. The tests in Sect. 6.3 were run on a quad
socket system with Westmere Intel Xeon (E7-4830, 24M Cache) processors, each
with 8 cores running at 2.13 GHz, hyperthreading disabled. The compiler used
was ICC version 13.0.0 on optimize level 3, on Redhat 4.4.7-3 with kernel version
2.6.32-358.0.1.

6.1 Overhead of Concurrent Cilk Modifications

In modifying the Cilk runtime, the first principle is “do no harm”—have we
incurred overhead for existing Cilk programs that do not pause fibers? In order
to measure this overhead, we ran a series of existing Cilk benchmarks both with
and without the Concurrent Cilk code in the runtime, scheduler loop, and work-
stealing code path.

– LU Decomp: LU decomposition of a 2048 × 2048 matrix.
– Strassen: Strassen’s algorithm for matrix multiplication on 2048 × 2048

matrices.
– Black-Scholes: Computes the financial, option-pricing algorithm.
– Knapsack: Solve the 0–1 knapsack problem on 30 items using branch and

bound.

The results of these benchmarks, as summarized in Fig. 4, show that the slow-
down to regular Cilk programs due to the added functionality of Concurrent
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Cilk is a geometric mean of 1.1%, with all but two benchmark configurations of
knapsack showing no overhead throughout – and even then the overhead only
happening while using hyperthreading. Note that in this plot, each different
thread setting is considered a different benchmark instance.

Further, as a variation on these traditional benchmarks, in Fig. 5, we inject
simulated network IO into the middle of parallel regions in each program. This
models the situation described at the outset of this paper (e.g., a ray-tracer that
has to fetch network data or do RPCs). The version using the Cilk IO library can
hide the latency of “network” operations, keeping cores busy. Here, cilk_sleep
is provided by the Cilk IO library to block only the fiber, while keeping the core
busy, just as with cilk_read.

What is surprising is that, in the Strassen benchmark, the version that per-
turbs Cilk by knocking out a Pthread (true sleep rather than cilk_sleep), slows
down the total runtime by more than would be predicted based on the total vol-
ume of blocked time and compute time. The problem is that with random injec-
tion of these “network” dependencies, sometimes the blocked region increases
the critical path of the program in a way parallelism does not compensate for.

6.2 Scheduling Microbenchmarks

The parallel Fibonacci algorithm (Sect. 1) is a widely used microbenchmark for
testing scheduler overhead, because it does very little work per spawned func-
tion. Cilk is known for its low-overhead spawns, with good constant factors and
speedups on parallel Fibonacci in spite of the spawn density. Here we use this
microbenchmark in two ways, to perform a shootout with or without using first
class synchronization variables.

Shootout with First-Class Sync Variables. More general than Cilk’s
strictly-nested, fork-join model is the class of parallel programming models with
arbitrary task dependence DAGs and first-class synchronization variables (e.g.,
IVars, MVars, channels). After adding IVars, Concurrent Cilk joins that more
general family. In this subsection—before comparing against restricted many-
tasking libraries—we first examine this more expressive class of schedulers by
itself. That is, we compare implementations of parfib in which data is returned
only via first-class synchronization variables, and which every spawned compu-
tation is at least potentially a blockable thread. Figure 6 shows this comparison.

Shootout with Task Runtimes. Again, the best-in-class performance for low-
overhead parallel function calls goes to languages and runtimes like traditional
Cilk. Figure 7 shows common task-parallel libraries compared against two dif-
ferent implementations running on the Concurrent Cilk runtime: the first is
a traditional fork-join parfib running on Concurrent Cilk using cilk_spawn and
return results simply with return/cilk_sync rather than through IVars. The sec-
ond is the same implementation of parfib but using IVars—instead of syncs–to
enforce data-dependencies.

Note that this graph runs a much larger input size (40 rather than 30),
which is due to the fact that the multi-threading rather than multi-tasking run-
times cannot scale to nearly the same size of inputs. (In fact, they can exceed
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Fig. 6. A comparison of lightweight
threaded runtimes with parallel
fibonacci implemented by blocking
on a first-class synchronization
object. Concurrent Cilk does well,
because of lazy thread creation. Each
synchronization on an IVar could
block, but not all do. Thus, initializa-
tion overhead is only incurred when
needed.
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Fig. 7. Restricted task-only libraries’
performance on parallel fibonacci, with
Concurrent Cilk (IVars) included for
comparison. The IVar-based version
does quite well here in spite of block-
ing threads on reads—it scales as well
as TBB and raw Cilk (spawn/return),
and outperforms Open MP.

maximum-thread limits and crash!) In this plot we see that while the Concurrent
Cilk/IVar implementation cannot keep up with TBB or traditional Cilk, the gap
is much smaller than it would be with Qthreads, Go, or Haskell threads.

6.3 “Sync elision” and Exposing Parallelism

In this set of benchmarks we examine the potential effects on performance of
enabling unrestricted program schedules not normally possible in a strictly fork-
join model. The most clear-cut example of a place where scheduling is over-
constrained by Cilk is when we have a producer and a consumer separated
by a sync. The producer and consumer may or may not contain enough par-
allelism to fill the machine, but because of the cilk_sync, there is no possi-
bility of pipeline parallelism between producer and consumer.8 We examine a
simple case of this pipeline parallelism opportunity: a sequential producer that
fills and then reads an array of 10, 000 IVars for 1000 iterations. It takes Cilk
0.6356 s, whereas Concurrent Cilk in this case—which allows simply deleting
the cilk_sync statement—takes 0.3981 s making the program 37% faster by

8 However, the specific, narrow case of linear, synchronous dataflow graphs is addressed
by recent work on extending Cilk with pipeline parallelism via a new looping
construct [10].
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introducing a benevolent producer/consumer race condition; if the consumer
gets ahead, it blocks on an unavailable IVar, allowing the producer to catch up.
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Fig. 8. A wavefront algorithm ran in two
modes: first, in a divide-and-conquer recur-
sive structure that divides the matrix into
quadrants, executing the NW sequentially,
and the NE and SW in parallel. The second
mode is to simply fork a computation for
each tile, and let IVars track the inter-tile
data dependencies.

It is in this way that the
Concurrent Cilk version of the producer-
consumer allows overlapping pro-
ducing and consuming phases thus
improving performance. This sort
of example could be generalized to
more traditional stream processing by
replacing the array of IVars with a
bounded queue.
Exposing More Parallelism: Wave-
front. The topic of removing syncs
to increase performance has received
some previous attention, and in par-
ticular the Nabbit project [3] built an
explicit task-DAG scheduler on top
of Cilk, demonstrating its benefits on
a wavefront benchmark. Concurrent
Cilk is a different tool than Nabbit in
that it allows true continuation cap-
ture rather than explicit registration
of callbacks (i.e., a manual form of continuation passing style which is a fre-
quent source of complaints in, e.g., JavaScript web programming). In Fig. 8, we
can see the speedup enabled on a relatively coarse grained wavefront compu-
tation (16× 16 matrix of inner data structures of size 512× 512). Because the
granularity is fairly coarse, there is a shortage of parallelism in this example
(which causes us to not speed up at 16 cores). The fork-join model “wastes”
parallelism by adding unnecessary scheduling dependencies via syncs, whereas
the IVar-based version retains all the application-level parallelism.

6.4 Servers with Per-Client Parallel Compute

A server that performs computations on behalf of a client can be an instance
of nested parallelism: (1) Parallelism between clients (“outer loop”), and (2)
Parallelism within the requested work for one client (“inner loop”).

To be robust against both extremes—a single client with a large work item,
and many small client requests—the Cilk approach to nested data parallelism
would seem ideal. However, there’s a drawback. In the server case, the outer
loop includes blocking communication: to accept client connections, and then to
send data to and receive data from each client.

The simplest way to program such a server is to use the same mechanism
for parallelism at both levels: either pthread_create or cilk_spawn. Yet both of
these implementations expose a problem. Forking too many pthreads can slow
down or crash the application, whereas traditional Cilk spawns do not prevent
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underutilization when blocking calls are made (and blocking calls underneath a
cilk_spawn can even be seen as a semantically incorrect contract violation).

Table 1. Throughput for different numbers of
clients for alternate server implementation strate-
gies at differing server workloads.
variant # conc

clients
work-per
request

throughput
(requests/s)

pthread/seq 1 fib(40) 2.53
4 fib(40) 9
8 fib(40) 18

cilk/cilk 1 fib(40) 33

4 fib(40) 33

8 fib(40) 35

conc cilk/cilk 1 fib(40) 35
4 fib(40) 35
8 fib(40) 35

pthread/seq 8 fib(30) 1891

cilk/cilk 8 fib(30) 1690

conc cilk/cilk 8 fib(30) 1656

pthread/pthread 1 fib(30) 0.48
4 fib(30) 0.12
8 fib(30) died

In this experiment, we use
an arbitrary parallel work-
load as the per-client request:
compute parallel fibonacci of
40 or 30, bottoming out to
a sequential implementation
below fib(10), and taking
about 600 ms and 4 ms, respec-
tively, when executed on one
core. The important thing is
that there is enough work to
keep all cores busy, even with
a single concurrent client.

We consider different strate-
gies corresponding to how the
outer/inner loop is handled.
Thus “Conc cilk/cilk” uses
Concurrent Cilk spawns at
both levels, with cilk_accept,
cilk_recv, and cilk_send in
place of the regular system calls. In contrast, “cilk/cilk” uses spawn at both lev-
els, but regular system calls (i.e. it makes no use of Concurrent Cilk). Likewise
“pthread/seq” spawns one pthread per client, but runs the inner computation
sequentially. As we see in Table 1, pthread/seq is a perfectly reasonable strategy
when there are enough clients. But when there is only a single client at a time,
Cilk variants perform much better because they can utilize all cores even for
one client. Likewise, Concurrent Cilk narrowly beats Cilk (35 vs. 32 requests
per second), based on keeping all cores utilized. Of course, “pthread/pthread”
cannot scale far due to limitations in OS thread scaling.

7 Related Work

In this section we consider Concurrent Cilk in the context of recent languages
designed with concurrency/parallelism in mind: e.g. Go [8], Manticore [5], Con-
current ML [16], and Haskell. Haskell IO threads, for example, share one or more
OS threads unless a blocking foreign function call is encountered [12], in which
case more OS threads are recruited on demand. Likewise, “goroutines” in Go
will share a fixed number of OS threads unless a thread makes a blocking call.
Like the classic Stein and Shaw 1992 system, these systems eagerly create thread
contexts upon spawning.

They specialize the stack representation, however. For example Go uses a
segmented stack representation, heap-allocating a small stack to start and grow-
ing as needed [8]. Thus, Go and Haskell (and Manticore, CML, etc.) can spawn
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hundreds of thousands or millions of threads. Specifically, Go or Haskell can exe-
cute parfib(30)—using a forked thread in place of cilk_spawn, and a channel to
communicate results back—in 4.7 s and 3.1 s respectively on a typical desktop.9

This represents 1.3 million forked threads. But the programs also take 2.6 Gb
and 1.43 Gb of memory, respectively! Also, as seen in Fig. 6, Concurrent Cilk
supports the same program with the same semantics (first class sync vars and
suspendable threads) at much higher performance.

MultiMLton—a whole program compiler for a parallel dialect of SML—is a
recent system which employs a lazy thread creation technique called parasitic
threads [18]. These leverage relocatable stack frames to execute forked threads
immediately inside the callers stack, moving them lazily only if necessary. This
technique is effective, but not applicable to C/C++ where stack frames are non-
relocatable.

8 Conclusions and Future Work

We have shown how, even with the constraint of legacy language support (C/C++
with linear stacks) and the complications of a mature parallel runtime system
(Cilk Plus), lazy thread creation can still be an appealing prospect. Implement-
ing it for Cilk Plus required only a couple points of contact with the existing
scheduler code. Most of the complexity falls in higher level libraries, such as our
IVar and Cilk IO libraries.

In future work, we plan to continue building high-level concurrent data struc-
tures and control constructs on top of the simple pause/resume fiber inter-
face. As we saw in Sect. 6, IVars are already sufficient to speed up some pro-
grams with data-driven control-flow in a non-fork-join topology, and the Cilk IO
library is sufficient to build server applications that mix concurrency and implicit
parallelism.
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Abstract. Conventional compilers provide limited external control over
the optimizations they automatically apply to attain high performance.
Consequently, these optimizations have become increasingly ineffective
due to the difficulty of understanding the higher-level semantics of the
user applications. This paper presents a framework that provides inter-
active fine-grained control of compiler optimizations to external users
as part of an integrated program development environment. Through
a source-level optimization specification language and a Graphical User
Interface (GUI), users can interactively select regions within their source
code as targets of optimization and then explicitly compose and config-
ure how each optimization should be applied to maximize performance.
The optimization specifications can then be downloaded and fed into a
backend transformation engine, which empirically tunes the optimiza-
tion configurations on varying architectures. When used to optimize a
collection of matrix and stencil kernels, our framework was able to attain
1.84X/3.83X speedup on average compared with using icc/gcc alone.

1 Introduction

As software applications continue to become more complex and difficult to ana-
lyze, compilers have to be increasingly conservative and refrain from many opti-
mization opportunities, due to the lack of sufficient understanding of their input
code. While developers are allowed some control over various strategies adopted
by compilers through command line options, these controls are limited to very
high level instructions, e.g., whether to attempt −O1, −O2, or −O3 optimiza-
tions. The internal decisions within the compiler are kept entirely away from
developers. Although pragmas may be inserted into source code to guide opti-
mizations of specific code regions, they are not always respected, as the compiler
makes the correctness guarantee of the compiled code a top priority.

It is well known that compiler optimizations are generally over-conservative,
not only because of the difficulty of understanding the higher-level semantics
of an input code via static program analysis, but also because of the unpre-
dictable interactions among the optimizations as the compiler tries to manage
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the increasingly large collection of machine resources, e.g., registers, caches, and
shared memories, of the evolving modern architectures. In short, compilers need
to allow developers to help more, especially when they are experts of high per-
formance computing. By allowing developers to exert more deliberate and fine-
grained control over compiler optimizations, their code may be more intelligently
optimized without compromising program correctness.

This paper presents an integrated program development environment that
provides compiler optimizations as an interactive toolset for developers to con-
veniently improve the efficiency of their applications. Our environment supports
extensive parameterization for a set of available optimizations, fine-grained coor-
dination among the optimizations once selected to optimize a piece of source
code, and the empirical tuning of optimization configurations based on runtime
feedback of differently optimized code. The objective is to provide a convenient
interface for developers to control the optimization decisions without compro-
mising the correctness or readability of their code.

Fig. 1. The optimization workflow

Figure 1 shows the overall workflow of
our interactive environment, which includes
three main components. The first compo-
nent is a web-based Graphical User Inter-
face (GUI), which a developer can use to
select regions of their source code to opti-
mize, potentially profitable optimizations for
each selected region, and the configuration
of each optimization. Annotations are then
inserted into the source code to tag the
selected regions as optimization targets, and
the optimization decisions are encoded in a
very high level (VHL) specification language
and passed to an Optimization Synthesis
component, which converts the VHL spec-
ification into a lower-level implementation
encoded using the POET program transfor-
mation language [18]; The POET Transfor-
mation Engine component then interprets
the lower-level POET script to generate an optimized variant of the annotated
input source code. The developer may then test the performance gain of the
optimizations and repeat the process until satisfactory performance is attained.
The POET optimization script can be ported to different machines together with
an annotated input program generated by the GUI. The POET transformation
engine, easily installed on each machine, can then provide empirical tuning sup-
port by automatically interpreting the POET scripts with different optimization
configurations until satisfactory performance is achieved.

Our environment currently supports a number of source-level loop and
data layout optimizations, including OpenMP parallelization, loop distribution,
fusion, interchange, skewing, blocking, unroll&jam, unrolling, array copying, and

adrien.cassagne@inria.fr



Interactive Composition of Compiler Optimizations 93

scalar replacement, which are known to be machine sensitive and to interact with
one another in unpredictable ways. The key technical challenges addressed by
our environment while interactively integrating these optimizations include:

– Extensive parameterization of optimizations: each optimization can be inde-
pendently toggled on/off for each code region and associated with an arbi-
trarily large configuration space, e.g., cache/parallelization/register blocking
factors. Fine-grained coordination among the optimizations is inherently sup-
ported through careful ordering of the selected optimizations and tracing of
the code regions being modified.

– Programmable composition of extensively parameterized optimizations: the
automatically generated POET output serves as an optimization script that
intelligently composes the user-selected optimizations one after another while
eliminating potential risks of unpredictable interactions among them.

Auto-tuning of the optimized code is supported using the extension of a previ-
ously developed transformation-aware search algorithm [19]. On two machines,
we have used the environment to optimize six scientific kernels and have attained
1.84X/3.83X speedup compared to using a vendor compiler alone.

The rest of the paper is organized as follows. Section 2 introduces our GUI for
supporting interactive optimization selection and configuration. Section 3 intro-
duces the POET transformation engine and how it can be used support the
programmable control and flexible composition of the optimizations. Section 4
presents our optimization synthesis component, which automatically converts
VHL specifications into a POET optimization script tailored for the user appli-
cation. Experimental evaluation is presented in Sect. 5. Section 6 discusses related
work. Finally, conclusions are drawn in Sect. 7

2 The Graphical User Interface

Developed to allow interactive selection and customization of compiler opti-
mizations, our web-based GUI is implemented in JavaScript and HTML, with
an Apache and PHP backend. The interface allows a user to upload an arbi-
trary number of files either as the source code of an application, optionally
with previously selected regions of code annotated as optimization targets, or
as an existing VHL specification saved from previous runs of the GUI to opti-
mize some selected regions of the source code. For each uploaded source code, a
user can select desired regions of code as targets of optimization, and customize
the desired optimizations for each selected target. Then, the GUI automati-
cally inserts code annotations that tag the selected optimization targets into the
source and then generates a VHL specification from the user’s customization.
Both the annotated source code and VHL specifications can be downloaded and
saved by the user for future use. At any time, the user can instruct the GUI to
pass the active source code and its VHL specification to the backend components
to generate optimized source code on the fly to be examined and experimented
with by the user. Both the optimized source code and the auto-generated POET
scripts can also be downloaded at any time as desired by the user.
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Fig. 2. Interacting with
the user

Figure 3(a) shows the VHL specification that
the GUI automatically generated for the matrix-
multiplication kernel shown in Fig. 4(a). The sequence
of interactions between the user and the GUI to gen-
erate the VHL specifications is shown in Fig. 2. The
process starts with the user uploading a source code
file (e.g. Figure 4(a)) to optimize. The uploaded file is
then automatically parsed and analyzed by the GUI,
which displays the code back to the user on the main
panel of the web-page with potential optimization tar-
gets, e.g., nested loops and array references, high-
lighted. If an existing VHL specification is uploaded,
each pre-specified optimization is validated, and the
valid optimizations are added into the optimization
configuration panel. The user can select highlighted
code regions by clicking on the highlighted text and
then providing a name to tag the selected optimiza-
tion target. Once the targets have been identified,
optimizations may be constructed. The user can inter-
act with two HTML pick-lists to create each optimiza-
tion: the first pick-list is comprised of all user-defined
optimization targets, and the second holds all sup-
ported optimizations. Once the target and optimization have been selected, a new
optimization automatically appears in the optimization configuration panel, with
a set of additional parameters to be further customized when the user clicks
the optimization’s “Edit” button. A majority of parameters are initially set to
default values and can be automatically tuned later to suit the needs of user
applications. If a user specifies out-of-range values for any parameters, the GUI
will immediately display an error message on the screen.

Our framework allows developers to experiment with an assortment of opti-
mizations as a toolbox without requiring detailed knowledge of the optimizations.
When a set of optimizations is ready for testing, an “Apply Optimizations” but-
ton is clicked to start the automated process. The GUI first encodes the selected
optimizations into the VHL specification language. It then passes the specifi-
cation and source code to the Optimization Synthesis and POET Translation
Engine components, with a logging panel displaying their working status. If the
optimizations are successfully applied, the optimized source code is displayed
on the main panel of the GUI. At this point the optimized source code and its
VHL specifications are immediately available for download, allowing the users
to save, examine, and test them for correctness or profitability. In the event that
the optimized source code is unsatisfactory, the user can move back to the origi-
nal source code and VHL specification to start over. Multiple files are supported
by the GUI, with an HTML pick-list holding the names of all uploaded source
files. As each file is selected in this pick-list, its content is displayed on the main
panel, along with its previously configured optimizations in the optimization
configuration panel.
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Nests: N1, N2, N3, N4
PermuteLoops:inner_loop=N3 target=N2

order="3,1,2"
FuseLoops: loop_to_fuse=N1 target=N2
FuseLoops: loop_to_fuse=N1 target=N4
ParallelizeLoop: target=N2

private=j,k,i
BlockLoops: inner_loop=N3 target=N2

factor=32,32,32

1: include opt.pi
2: <parameter N2_blk_sz default=(32 32 32) />
3: <parameter N2_par_blk_sz default=(256) />
4: <trace inputCode,N1,N2,N4,N3 />
5: <input from="mm.c" syntax="Cfront.code" to=inputCode/>
6: <trace N2_cleanup=(N2) /> <trace N2p=(N2_cleanup) />
7: <trace N2_private = (("j" "k" "i")) />
8:......
9:<eval EraseTraceHandle[repl=N2p](N2,inputCode);
10: PermuteLoops[order=(3 1 2)](N3[N.body],N2);
11: FuseLoops(N1,N2);
12: FuseLoops(N1,N4);
13: BlockLoops[factor=N2_par_blk_sz](N2p[Nest.body],N2p);
14: ParallelizeLoop[private=N2_private](N2p);
15: TraceNestedLoops(N2_cleanup,N2p[Nest.body]);
16: BlockLoops[factor=N2_blk_sz;

trace_ivars=N2_private](N3,N2);
17: CleanupBlockedNests(N2_cleanup); />
18: <output syntax="Cfront.code" from=inputCode />

(a) VHL specification (b) auto-generated POET script

Fig. 3. Applying loop optimizations to a matrix-multiplication kernel

3 The POET Transformation Engine

POET is a scripting language [18,20] designed to support programmable control
and flexible composition of heavily parameterized compiler optimizations. As
shown in Fig. 1, the transformation engine includes two components: the POET
language interpreter, and an empirical search engine. The POET interpreter
takes three inputs: the POET script describing what optimizations to apply,
an annotated source code of the input program to optimize, and configurations
of the optimization parameters. It then applies the desired optimizations and
generates an optimized code. The empirical search engine [19], on the other hand,
automatically explores the configuration space of the optimizing transformations
and iteratively experiments with differently optimized code until satisfactory
performance is attained. This empirical tuning support allows the optimized
code to be automatically ported to different platforms without requiring the
user to set the best optimization configurations. Both the language interpreter
(together with its optimization libraries in POET) and the search engine are
lightweight and can be easily ported to different machines, thereby supporting
the performance portability of applications optimized through our interactive
GUI.

Figure 3(b) illustrates the auto-generated POET optimization script from
the VHL specification in (a). The inclusion of file opt.pi at line 1 in the script
ensures that the POET opt library, which supports a large number of com-
piler optimizations, can be invoked by the given script. Lines 2–3 declare con-
figuration parameters (blocking factors) of the optimizations to be empirically
tuned by the search engine. Line 4 declares 5 special global variables (input-
Code, N1 - N4) called coordination handles [21], which have been used to tag
various fragments of the input code, as these code fragments are used either
as the targets or additional configuration parameters of the selected optimiza-
tions. These coordination handles are embedded inside the input code, illustrated
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in Fig. 4(a)–(e), to automatically keep track of modifications to their content as
the input code goes through each of the optimizations in the VHL specification.
Line 5 parses the matrix multiplication code using C syntax descriptions spec-
ified in file Cfront.code and then stores the resulting AST to the coordination
handle inputCode. Lines 6–7 declare two additional coordination handles, simi-
larly embedded in the input code illustrated in Fig. 4(a)–(e). Lines 9–17 serve to
apply the 5 optimizations specified in the VHL specification one after another,
by using the 7 coordination handles (declared at lines 4, 6, and 7) and the tun-
ing parameters (declared at lines 2–3) as parameters to invoke the underlying
optimization implementations from the POET opt library. Each optimization
modifies these handles to coordinate their transformations of the input code.
Finally, the output command at line 18 unparses the optimized AST to standard
output.

4 Optimization Synthesis

The optimization synthesis component automatically translates a VHL specifi-
cation obtained from the GUI, e.g., Fig. 3(a), into a POET script that the POET
Transformation Engine can use to systematically optimize the selected targets
embedded inside the user application by the GUI. Our algorithm in Fig. 5 shows
the steps taken for this process. As illustrated in Fig. 3(b), the resulting POET
script needs to correctly perform the following tasks.

1. Parameterization of the optimizations: due to the difficulty of predicting the
potential interactions among the optimizations and the characteristics of the
machines that the input application may be ported to, all machine-sensitive
optimizations need to be parameterized, so that their configurations can be
empirically tuned later by the POET transformation engine.

2. Collective customization of the optimizations: since the user can select many
optimizations for each region of code, the individually configured optimiza-
tions must be collectively customized to maximize their overall effectiveness.

3. Fine-grained coordination among optimizations: since the optimizations in
the VHL specification must be applied one after another in the POET script,
an earlier optimization may modify the input to such a point that a later one
can no longer be applied correctly, unless all optimizations carefully coordi-
nate with one another at every step.

To address the above challenges in a fully extensible fashion so that it can be
easily made to include more optimizations in the future, our algorithm uses five
configuration tables, summarized in the following, to save all information about
the optimizations currently supported.

4.1 Configuration Tables

As shown at the beginning of Fig. 5, our GenOptScript algorithm requires six
input parameters, including the VHL specification (spec), alongside the following
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inputCode:{
void gemm(double *a,double
1: *b,double *c,double t,int n)
2: {
3: int i,j,k;
4: {N1:{for (j=0; j<n; j ++)
5: for (i = 0; i < n; i ++)
6: c[j*n+i] = t*c[j*n+i];}
7: N2p:{N2 cleanup:{N2:{

for (k=0; k<n; k++)
8: N4:{for (j=0; j<n; j++)
9: N3:{for (i=0; i<n; i++)
10: c[j*n+i] +=

a[k*n+i] * b[j*n+k]; }}}
11: }}

(a) original code

inputCode:{
void gemm(double *a,double
1: *b,double *c,double t,int n)
2: {
3: int i,j,k;
4: N1:{for (j = 0; j < n; j ++)
5: for (i = 0; i < n; i ++)
6: c[j*n+i] = t*c[j*n+i];}
7: N2p:{N2 cleanup:N2:{

for (j=0;j<n;j++)
8: N4:{for (i = 0; i < n; i ++)
9: N3:{for (k=0; k<n; k++)
10: c[j*n+i] +=

a[k*n+i] * b[j*n+k]; }}}}
11: }}
(b) after loop permutation

inputCode:{
void gemm(double *a,double
1: *b,double *c,double t,int n)
2: {
3: int i,j,k;
4: N2p:{N2 cleanup:N2:{

for (j=0;j<n;j++)
5: N4:{for (i=0; i<n; i++) {
6: N1:{c[j*n+i]=t*c[j*n+i];}
7: N3:{for (k=0; k<n; k++)
8: c[j*n+i] +=

a[k*n+i] * b[j*n+k]; }
9: }}}}
10: }}

(c) after loop fusion

inputCode:{
void gemm(double *a,double
1: *b,double *c,double t,int n)
2: {
3: int i,j,k,i1,j1,k1;
4: N2p:{#pragma omp for private(j1,j,i,k)
5: for (j1 = 0; j < n; j +=256)
6: N2 cleanup:{
7: N2:{for (j=0; j<min(256,n-j1); j++)
8: N4:{ for (i = 0; i<n; i ++) {
9: N1:{c[j*n+i]=t*c[j*n+i];}
10: N3:{for (k=0; k<n; k++)
11: c[j*n+i] +=

a[k*n+i] * b[j*n+k]; }
12: }}}}
13: }}

(d) after loop parallelization

inputCode:{
void gemm(double *a,double
1: *b,double *c,double t,int n)
2: {
3: int i,j,k,j1,k1,j2,i1;
4: N2p:{#pragma omp for private(j1,j,i,k,j2,i1,k1)
5: for (j1 = 0; j < n; j +=256)
7: N2 cleanup:{
8: N2:{for (j2=0; j2<min(256,n-j1); j2+=32)
9: N4:{for (i1 = 0; i1<n; i1+=32)
10: N3:{for (k1=0; k1<n; k1+=32)
11: for (j=0; j<min(32,n-j1-j2); j++)
12: for (i=0; i<min(32,n-i1); i++) {
13: if (k1 == 0)
14: N1:{ c[(j1+j2+j)*n+(i1+i)] =

t*c[(j1+j2+j)*n+(i1+i)]; }
15: for (k = k1; k<min(k1+32,n); k ++)
16: c[(j1+j2+j)*n+(i1+i)] +=

a[(k1+k)*n+(i1+i)] * b[(j1+j2+j)*n+(k1+k)];
17: } }}}}}
18: }}

(e) after loop blocking

Fig. 4. Optimized code from optimization specifications

five extensible configuration tables, which save all the relevant information about
the optimizations currently supported by our environment.

The Optimization Table (named opt table in Fig. 5): indexed by the optimiza-
tion names, this table stores the interface of each optimization and categorizes its
parameters into three groups: the required input parameters, whose values must
be supplied by the VHL specification; the optional parameters, each of which
has a default value if not part of the VHL specification; and tuning parameters,
which represent machine-sensitive configurations of the optimization and need
to be empirically tuned.

The Parameter Table (named param table in Fig. 5): indexed by the name
of each parameter that may be used to configure an optimization, this table
saves the semantics of the parameter irrespective of where it is used, including
the range of acceptable values, its default value if unspecified in the VHL, and
whether grouping is required if the parameter needs to be coordinated when
multiple optimizations are applied to a single code region.
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GenOptScript(spec, opt table, param table, cleanup table, group table, interfere table)
1: if not verify correctness(spec,opt table,param table) then report error endif
2: /* coordination handles */handles=lookup optimization targets(spec);

/*tuning parameters*/ tuning=∅; /* opt invocations*/ xforms = ∅; cleanup = ∅;
3: for each f = (opt name, opt target, opt config) ∈ spec do
3.0: opt table spec = lookup opt params(opt table, opt name);
3.1: /* collect tuning parameters of the opt */

for each (p name, p type) ∈ opt table spec where p type is a tuning parameter do
tune name=concat(p name, opt target); tune info = lookup param info(param table,p name);
tuning = tuning ∪ { gen tuning decl(tune name, tune info)};
opt config = opt config ∪ { gen opt config(p name, tune name)};

3.2: /* collect any cleanup invocation required */
for each clnup opt ∈ lookup cleanup spec(cleanup table, opt name) do
append opt(cleanup, instantiate(clnup opt, opt config), group table);

3.3: /* categorize loop handles into groups */
grp idx = lookup group index(group table, opt name);
for each (p name, p type) ∈ opt table spec where p type requires a coordination handle do

p val = lookup value(opt config, p name)
if p val != null then
new val = gen group handle(p val, grp idx); modify value(opt config, p name, new val);
handles = append handles(handles, new val, grp idx);

3.4: /* generate fix-up invocations to accommodate interferences*/
insert before = insert after = ∅;
for each unprocessed opt g = (opt name 2, opt target, opt config 2) ∈ spec ∪ cleanup do
(new params, opt before, opt after) = lookup fixup(interfere table, opt name, opt name2);
opt config = opt config ∪ { instantiate(new params, opt config, opt config 2) } ;
append opt(insert before, instantiate(opt before, opt config, opt config 2), group table);
append opt(insert after, instantiate(opt after,opt config,opt config 2), group table);

cur opt = concat(insert before, gen opt invoke(opt name,opt target, opt config), insert after);
3.5: append opt(xforms, cur opt, group table);
4: return gen POET script(tuning, handles, xforms, cleanup);

Fig. 5. Optimization synthesis algorithm

The Cleanup Table (named cleanup table in Fig. 5): indexed by the opti-
mization names, this table defines any additional followup operations that are
required at the end of the POET script for each optimization, if the optimization
is in the VHL specification. For example, if either loop blocking or unroll&jam
are to be applied, the cleanup table specifies additional loop splitting operations
to clean up expensive conditionals inside of the optimized loops.

The Grouping Table (named group table in Fig. 5): indexed by the optimiza-
tion names, this table assigns each optimization to a group uniquely identified
by an integer (group idx), which combines with the values of an optimization
configuration parameter to uniquely identify a coordination handle to create and
be used by the optimization. To elaborate, each configuration parameter of an
optimization requires a coordination handle to keep track of interferences from
other optimizations. Optimizations of the same group can have their parameters
share the same handle, if the parameters have the same value in the VHL. The
group indices are further used as ordering constraints of the optimizations when
they are appended to the final POET output at Steps 3.2 and 3.4 of Fig. 5. In
particular, optimizations targeting the same handle are ordered by the contain-
ment relationship of their optimized code: OpenMP parallelization is done first,
whose optimized code contains those of additional cache reuse optimizations,
which generate code that in turn is used as input to CPU-level optimizations.

The Interference Table (named interfere table in Fig. 5): indexed by pairs of
optimization names, this table specifies how to resolve interferences between each
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pair of optimizations through two remedies: by directly modifying the configu-
ration of the interfering optimization (e.g., by modifying the private variables of
OpenMP parallelization after new local variables are created), and by inserting
additional POET instructions to adjust the coordination handles, before or after
the interfering optimization.

4.2 The Algorithm

Using the five configuration tables described above, our optimization synthesis
algorithm translates a VHL specification into a lower-level implementation using
the inherit support of optimization parameterization and fine-grained coordina-
tion supported by the POET language [17] through the following steps.

Input Validation (Steps 1 and 2 of Fig. 5). The algorithm starts by verify-
ing the consistency of the input VHL specification against information obtained
from the opt table and the param table (Step 1). Specifically, the algorithm ver-
ifies that all the required parameters for each optimization have been given a
valid value, and all constraints between values of different parameters are satis-
fied. Then (Step 2), it initializes the four components of the final POET output:
the declarations of all tuning parameters (tuning), the declarations of all coordi-
nation handles (handles), the list of POET invocations to be translated from the
VHL specification (xforms), and the list of follow-up POET operations required
to clean up the optimizations (cleanup). The validation provided by our GUI is
purposefully limited to allow the developer to circumvent any over conservative-
ness by a conventional compiler as long as the manually specified optimizations
can be carried out in a meaningful fashion, as enforced by the checking of opti-
mization parameters.

Parameterization of the Optimizations (Steps 3.0 and 3.1). For each
optimization in the VHL specification, Step 3.0 obtains its parameter specifica-
tions from the opt table. Step 3.1 then identifies all the parameters that need to
be empirically tuned, adds a new global variable declaration for each found tun-
ing parameter, and then uses these tuning variables to customize (through the
opt config variable) the optimization from the VHL specification. These tuning
variables are declared at line 2–3 of the example POET output in Fig. 3(b) and
are used to customize the later optimizations at lines 10–17. If a value is given
to the tuning parameter in the VHL specification, the specified value is used;
otherwise, a default value obtained from the param table is used.

Collective Customization of the Optimizations (Steps 3.2 and 3.5).
The customization of the optimizations includes two aspects: the addition of
any followup operations to be included in the final POET output, obtained
from the cleanup table for each optimization specified in the VHL at Step 3.2;
and the adoption of predefined ordering of the optimizations, obtained from
the group table and enforced by the append opt invocation at steps 3.2 and 3.5.
Optimizations that belong to the same group are ordered as they appear in
the original VHL specification. For example, the final POET output in Fig. 3(b)
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contains the additional optimization CleanupBlockedNests to cleanup after the
BlockLoops optimization in the VHL specification, and all the optimizations
are ordered so that loop parallelization is applied first, followed by cache-level
optimizations (e.g., loop permutation and blocking), which are in turn followed
by CPU-level optimizations (e.g., loop unroll&jam and unrolling).

Fine-Grained Coordination (Steps 3.3 and 3.4). As the optimizations
must be applied one after another in the POET script, each optimization must
carefully coordinate with the others in the POET output. Our algorithm auto-
matically supports such coordinations through two steps. First, in Step 3.3, it
creates a coordination handle for each configuration parameter that may be
affected by other optimizations. Then, in Step 3.4, it inserts POET operations
to adjust the values of all the affected coordination handles as each optimization
is applied.

Since multiple optimization parameters may refer to the same piece of input
code, their coordination handles need to be carefully managed so that their
nesting relationships will not change irrespective of how many optimizations
have been applied. In particular, our group table organizes all the optimizations
into distinct groups, with each group identified by a unique integer index, based
on two constraints: (1) the parameters of all optimizations in the same group
can share a single coordination handle if the parameters refer to the same piece
of input code in the VHL specification, because their values will always remain
the same; and (2), if two optimizations belong to distinct groups (e.g., loop
blocking and loop unroll&jam), and some of their parameters refer to the same
piece of input code in the VHL specification (e.g., both operating on the same
target), then the optimization with the larger group index will always have a
coordination handle that contains that of the smaller group index. This handle
composition process is enforced by the append handles operation in Step 3.3.

Figure 3(b) shows the handle grouping and composition results for the VHL
specification in Fig. 3(a). Here two additional coordination handles, N2 cleanup
and N2p, are created at lines 6 to be nested outside of the original optimiza-
tion target N2 from the VHL. ParallelizeLoop has the highest group index and
therefore is configured with the outermost coordination handle, N2p. Next, the
cleanup optimization required for loop blocking causes yet another coordination
handle, N2 cleanup, to be created and nested inside N2p, but outside of N2.
PermuteLoops, FuseLoops, and BlockLoops belong to a single group that has
the lowest group index, therefore sharing the handle created to trace the original
optimization target. Figures 4(b)–(e) illustrate how these coordination handles
adjust as the input code is modified by each optimization specified.

The actual adjustment of the coordination handles are implemented by
POET operations inserted by Step 3.4 of the algorithm, which looks in the
interference table to identify what coordination is required for each pair of opti-
mizations from the VHL specification or the cleanup operations to be inserted.
Then, the coordination is applied either through direct modification of the opti-
mization configurations or through POET operations inserted before or after the
interfering optimization to adjust affected coordination handles.
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Two interferences exist in the VHL specification from Fig. 3(a). The first
occurs between ParallelizeLoop and BlockLoops and is accommodated by insert-
ing the trace ivars configuration for BlockLoops at line 16 of Fig. 3(b), so that
new local variables created by BlockLoops are included as private variables of the
OpenMP pragma. The second interference occurs between the ParallelizeLoop
and the auto-generated CleanupBlockedNests and entails line 13 to be inserted
before ParallelizeLoop to stripmine the loop being parallelized into two nested
ones, so that the inner one can be used as target for additional single-thread
optimizations, by moving the N2 cleanup handle to the inner loop at line 15.

Outputting the Result (Step 4). After obtaining all the necessary compo-
nents, the final POET script is generated by simply putting everything together.

5 Experimental Evaluation

While our environment currently supports only a limited number of loop and array
optimizations, shown in Table 1, our hypothesis is that when explicitly specified,
the impact of these optimizations can be enhanced significantly through collective
customization, fine-grained coordination, and empirical performance tuning, espe-
cially when a compiler fails to automatically recognize opportunities of applying
some of them due to insufficient understanding of the input code.

To validate our hypotheses, we used our environment to interactively specify
optimizations for six matrix and stencil computation kernels, shown in Table 1.
All kernels are implemented in C/C++ in a form that is easy to analyze, as
illustrated in Fig. 4(a). For each kernel, we selected the optimizations that can
be safely applied to potentially improve its performance and relied on the empir-
ical tuning support by the backend POET transformation engine to determine
the best configurations. Three implementations are generated for each kernel: an
ICC/GCC version, generated by using the vendor compiler (icc or gcc) to opti-
mize the original code (with the −O3 flag); a GUI-Default version, generated
by additionally applying optimizations interactively specified through our envi-
ronment, using a default configuration for each optimization; and a GUI-Tune
version, which further employs empirical tuning to find the best GUI-specified
optimization configurations.

All kernels are evaluated on two platforms shown in Table 2, with the
machines kept otherwise idle while running the experiment. Each evaluation
is repeated 10 times, and the average elapsed time of running each kernel imple-
mentation is used to compute its GFLOPS (billion floating point operations per
second). The variation among different runs is less than 10 %.

Figure 6(a) compares the performance of the differently optimized versions
on the Intel platform. Even without empirical tuning, the additional optimiza-
tions applied by our environment were able attain 1.43X speedup on average for
the kernels, and empirical tuning is able to further boost the average speedup to
a factor of 1.84. An interesting observation is that without empirical tuning,
the performance of the GUI-Default-ICC version for the kernel jacobi7 did not
improve the performance of the original version, while with tuning we were able
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Table 1. Kernels used for experiments

Kernel Description Data size Interactive optimizations

dger Rank one update 102402 ParallelizeLoop, BlockLoops, UnrollJam,
ScalarRepl, UnrollLoop

dgemm dense
matrix-matrix
multiplication

12802 PermuteLoops, FuseLoops,
ParallelizeLoop, BlockLoops,
UnrollJam, ScalarRepl

dgemvN dense matrix-vector
multiplication

102402 ParallelizeLoop, BlockLoops, UnrollJam,
UnrollLoop

dgemvT dense matrix-vector
multiplication
with transpose

102402 ParallelizeLoop, BlockLoops, UnrollJam,
UnrollLoop

jacobi7 3D 7-point Stencil 1283 ParallelizeLoop, BlockLoops, SkewLoops

vmult Sparse
matrix-vector
multiplication

51202 ParallelizeLoop

Table 2. Machine configuration

CPU Intel(R) Xeon(R) CPU
E5-2420 1.90 GHz,
12 Cores

AMD Opteron(tm)
Processor 6128 2.00 GHz,
24 Cores

Cache L1-Data
32 KBytes 64 KBytes

L1-Instruction
32 KBytes 64 KBytes

L2-Private
256 KBytes 512 KBytes

L3-Shared 15360 KBytes 5118 KBytes

Main memory 16 GiB 64 GiB

Operating system CentOS 6.6,
Linux 2.6.32

Ubuntu 14.04.2,
Linux 3.13.0

Compiler icc 15.0.0 with −O3 flag gcc 4.8.2 with −O3 flag

to attain 2.48X better performance. Since many of the optimizations we cur-
rently support are heavily machine sensitive, it is important to use the proper
configurations to attain the desired performance improvement. The best speedup
of 3.5X for the GUI-Tune-ICC version is attained for the dgemm kernel, which
performs an order of N3 computations on N2 data. Here BlockLoops can signif-
icantly improve the performance by reusing the data already brought in cache,
thereby changing the kernel’s behavior from memory-bound to CPU-bound.
For the other kernels, e.g., dger and vmult, which are fundamentally memory
bound due to the lack of data reuse, our optimizations are not very effective and
are able to attain only 1.05X speedup for dger and 1.17X speedup for vmult.
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(a) ICC -O3 on Intel platform (b) GCC -O3 on AMD platform

Fig. 6. Evaluation results of GUI

Figure 6(b) shows our evaluation results on the AMD platform. Here, every
kernel, when optimized using our interactive environment, was able to attain
significantly better performance when compared to using the gcc compiler alone.
On average, our environment was able to attain 3.14X performance improvement
over the original version with the default configurations of the optimizations,
and empirical tuning was able to attain 3.83X additional speedup. Specifically,
it attained an extra performance improvement of up to 8.67X and 5.28X for the
dense matrix computation kernels dgemvN and dgemm respectively and a 1.9X
improvement for the vmult kernel with the GUI-Tune-GCC version.

6 Related Work

Existing research has developed a large collection of compiler optimizations to
automatically improve the performance of scientific applications [1,3,6,7,16].
Many of these optimizations can be naturally parameterized, e.g., loop block-
ing [10], fusion [11], unrolling [12], and software pipelining [8]. Cohen, et al. [3]
used the polyhedral model to parameterize the composition of loop optimiza-
tions. Our framework supports many of these optimizations, with parameterized
configurations, and aims to make them available as a toolset for interactive use
by developers to attain portable high performance.

The importance of facilitating effective communication between optimizing
compilers and developers has been well-recognized. Hall et al. [5] allows develop-
ers to provide a sequence of loop transformation recipes to guide optimizations by
their compiler. The X language [4] uses C/C++ pragmas to guide the application
of a collection of loop- and statement-level optimizations. Our work similarly pro-
vides direct access of compiler optimizations to the developers. Our framework
provides additional support for interactive selection, extensive parameterization,
and automated coordination of the optimizations.

Our work uses the POET language [18,20] to provide the underlying support
for the interactive composition of parameterized compiler optimizations. Existing
work has demonstrated that through fine-grained coordination and collective cus-
tomization, POET can be used to specialize compiler optimizations to attain a
highest level of portable performance for dense linear algebra kernels [15,21,22].
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Yi [17] has used a source-to-source optimizing compiler to automatically produce
parameterized POET scripts so that the optimization composition can be revised
by developers if desired, and the optimization configurations can be empirically
tuned. As a complimentary framework for this work, our GUI can be used to pro-
vide an interactive interface for developers to conveniently revise optimization
decisions by their compilers. Our auto-generated POET scripts can be easily inte-
grated with existing empirical tuning research [2,9,13,14,23] to automatically find
desirable optimization configurations.

7 Conclusions and Future Work

We have presented a framework to enable compiler optimizations being used as
an interactive toolset by developers. Our framework addresses the key technical
challenge of interactive selection and composition of extensively parameterized
compiler optimizations, while using the POET transformation engine [18,20]
to support the programmable customization and empirical tuning of differently
optimized code. We have demonstrated the practicality of this framework by
using it to optimize six commonly used scientific computing kernels and have
shown that significantly better performance can be achieved by the interactive
optimization framework than using the conventional optimizing compilers alone.

Our approach exposes compiler optimizations to be interactively controlled
and customized by developers by providing each optimization an explicit well-
defined parameter space, far beyond the optimization flags supported by conven-
tional compilers. We currently support only a subset of the optimizations applied
manually by high performance computing specialists, consequently our attained
performance still lag far behind those of hand optimized kernels. We expect to
significantly increase the collection of optimizations in the future while efficiently
exploring their configuration spaces to enhance application performance.
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Abstract. Nested parallelism is of increasing interest for both expres-
sivity and performance. Many problems are naturally expressed with this
divide-and-conquer software design approach. In addition, programmers
with target architecture knowledge employ nested parallelism for perfor-
mance, imposing a hierarchy in the application to increase locality and
resource utilization, often at the cost of implementation complexity.

While dynamic applications are a natural fit for the approach, sup-
port for nested parallelism in distributed systems is generally limited
to well-structured applications engineered with distinct phases of intra-
node computation and inter-node communication. This model makes
expressing irregular applications difficult and also hurts performance by
introducing unnecessary latency and synchronizations. In this paper we
describe an approach to asynchronous nested parallelism which provides
uniform treatment of nested computation across distributed memory.
This approach allows efficient execution while supporting dynamic appli-
cations which cannot be mapped onto the machine in the rigid manner
of regular applications. We use several graph algorithms as examples to
demonstrate our library’s expressivity, flexibility, and performance.

Keywords: Nested parallelism · Asynchronous · Isolation · Graph ·
Dynamic applications

1 Introduction

Writing parallel applications is difficult, and many programming idioms taken for
granted in sequential computing are often unavailable. One of these tools, pro-
gram composition via nested function invocation, is not present in many parallel
programming models, at least not in a general form that is abstracted from the
target architecture. Indeed, while nested parallelism is a natural way to express
many applications, employing it is often constrained by the deep memory hier-
archies and multiple communication models of modern HPC platforms.

While the efficient mapping of the application’s hierarchy of algorithms onto
the machine’s hierarchy is important for performance, we believe requiring devel-
opers to explicitly coordinate this effort is overly burdensome. Furthermore,
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direct management leads to ad-hoc solutions that significantly decrease software
reuse, which is key to addressing the difficulties of parallel programming.

This work describes the support for nested parallelism in the runtime system
of stapl [8], a generic library of components for parallel program composition.
The stapl-rts [29] serves the higher levels of the library, providing a uniform
interface for computation and communication across distributed systems, while
internally using shared memory optimizations where possible.

In this paper, we show how this uniform interface extends to the creation
of nested parallel sections that execute stapl algorithms. These nested SPMD
(Single Program Multiple Data) sections provide an isolated environment from
which algorithms, represented as task dependence graphs, execute and can spawn
further nested computation. Each of these sections can be instantiated on an
arbitrary subgroup of processing elements across distributed memory.

While the stapl-rts supports collective creation of nested parallel sections,
in this work we focus on the one-sided interface. The one-sided interface allows
a local activity (e.g., visiting a vertex in a distributed graph) on a given location
to spawn a nested activity (e.g., following all edges in parallel to visit neigh-
bors). As we will show, both the creation and execution of this nested activity
are asynchronous: calls to the stapl-rts are non-blocking and allow local activ-
ities to proceed immediately. Hence, the one-sided, asynchronous mechanism is
particularly suitable for dynamic applications.

Nested sections are also used to implement composed data structures with data
distributed on arbitrary portions of the machine. Together, this support for nested
algorithms and composed, distributed containers provides an increased level of
support for irregular applications over previous work. In the experimental section,
we demonstrate how the algorithms and data interact in a stapl program, initially
with finding the minimum element on composed containers created such that com-
putation is imbalanced. We also use a distributed graph with vertex adjacency
lists being stored in various distributed configurations. Without any changes to
the graph algorithm, we are able to test a variety of configurations and gain sub-
stantial performance improvements (2.25x at 4 K cores) over the common baseline
configuration (i.e., sequential storage of edge lists).

Our contributions include:

Uniform Nested Parallelism with Controlled Isolation. Support for arbi-
trary subgroups of processing elements (i.e., locations) across distributed mem-
ory. The sections are logically isolated, maintaining the hierarchical structure
of algorithms defined by the user. For instance, message ordering and traffic
quiescence is maintained separately for each nested section.

Asynchronous, One-sided Creation of Parallel Sections. The ability to
asynchronously create nested parallel sections provides latency hiding which
is important for scalability. We combine one-sided and asynchronous parallel
section creation, presenting a simple and scalable nested parallel paradigm.

Use of stapl-rts to Implement Dynamic, Nested Algorithms. We use
our primitives to implement several fundamental graph algorithms, and
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demonstrate how various distribution strategies from previous work can be gen-
eralized under a common infrastructure using our approach to nested parallelism.

2 Related Work

When introduced, nested parallelism was used primarily for expressiveness, as in
NESL [4]. The NESL compiler applies flattening, transforming all nested algo-
rithms to a flat data parallel version, a technique with performance limitations.

OpenMP [27] has had nested parallelism capabilities since its inception.
There is some work on nested parallelism for performance [15]. However, the
collapse keyword in OpenMP 3.0 that flattens nested parallel sections attests
to the difficulty of gaining performance from nested parallelism in OpenMP.

Other parallel programming systems employ nested parallelism for perfor-
mance. Users express algorithms using nested sections for the sole purpose of
exploiting locality. Restrictions are often imposed to achieve performance, lim-
iting expressiveness. MPI [25] allows creating new MPI communicators by par-
titioning existing ones or by spawning additional processes. This functionality
can be used to map nested parallel algorithms to the machine, however it mostly
suits static applications, as each process must know through which MPI com-
municator it should communicate at any given point in the program.

Several systems enhance the MPI approach, while simplifying the program-
ming model. Neststep [23] is a language that extends the BSP (bulk synchronous
parallel) model and allows the partitioning of the processing elements of a super-
step to smaller subsets or subgroups that can call any parallel algorithm. These
subgroups need to finish prior to the parent group continuing with the next
superstep. UPC [14] and Co-Array Fortran [24] have similar restrictions.

Another common approach is to use MPI for the first level parallelism (dis-
tributed memory) and OpenMP for the shared memory parallelism [10,33], lead-
ing to ad-hoc solutions with manual data and computation placement.

Titanium [22] and UPC++ [38] introduce the Recursive SPMD (RSPMD)
model and provide subgrouping capabilities, allowing programmers to call paral-
lel algorithms from within nested parallel sections that are subsets of the parent
section. Similarly to Neststep, they also require that the nested sections finish
before resuming work in the parent section.

The Sequoia [16] parallel programming language provides a hierarchical view
of the machine, enforcing locality through the nested parallelism and thread-
safety with total task isolation: tasks cannot communicate with other tasks and
can only access the memory address space passed to them. This strong isolation,
in conjunction with execution restrictions to allow compile-time scheduling of
task scheduling and task movement, limits its usefulness in dynamic applications.

Several systems support task-based parallelism, allowing the user to spawn
tasks from other tasks. The programmer can thus express nested parallelism
with the system responsible for placement. These include Intel Thread Building
Blocks [32] and Cilk [5]. Since task placement is done in absence of knowledge
about locality, one of the benefits of nested parallelism is lost.
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X10 [12], Habanero-Java [11], HPX [20], and Fortress [21] all offer task-based
parallelism, going a step further and allowing control over task placement. How-
ever, they suffer from loss of structure of the execution of the algorithms, as
tasks are independent of each other. Building on top of Habanero, Otello [37]
addresses the issue of isolation in nested parallelism. While maintaining a task
parallel system, Otello protects shared data structures through analysis of which
object each task operates on and the spawning hierarchy of tasks.

Chapel [9] is a multi-paradigm parallel programming language and supports
nested parallelism. While it supports data and task placement, users are given
only two parallel algorithms (parallel for, reduce). Other parallel algorithms have
to be implemented explicitly using task parallelism.

Legion [3] retains Sequoia’s strong machine mapping capabilities while relax-
ing many of the assumptions of Sequoia, making it a good fit for dynamic appli-
cations. It follows a task parallel model in which tasks can spawn subtasks with
controlled affinity. However, this process leads to loss of information about the
structure of the parallel sections, as with other task parallel systems.

From Trilinos [2], Kokkos supports nested parallelism by allowing the divi-
sion of threads in teams recursively. While threads in the same team are con-
current, teams cannot execute concurrently, and only three algorithms (parallel
for, reduce and scan) are available to be invoked from within a nested parallel
section.

Phalanx [19] can asynchronously spawn SPMD tasks that execute on multiple
threads. Programmers allocate memory explicitly on supported devices (CPU,
GPU, etc.) and invoke tasks on them, creating parallel sections. Phalanx has a
versatile programming model and is the most similar related work to the stapl-
rts. Its main difference from the stapl-rts is that Phalanx requires explicit
control of resources. Data and task placement needs to be statically specialized
with the target (e.g., GPU, thread, process), transferring the responsibility of
resource management to the user and creating the need for multi-versioned code.

3 stapl Overview

The Standard Template Adaptive Parallel Library (stapl) [8] is a framework
developed in C++ for parallel programming. It follows the generic design of
the Standard Template Library (stl) [26], with extensions and modifications
for parallelism. stapl is a library, requiring only a C++ compiler (e.g., gcc)
and established communication libraries such as MPI. An overview of its major
components are presented in Fig. 1.

stapl provides parallel algorithms and distributed data structures [18,34]
with interfaces similar to the stl. Instead of iterators, algorithms are written
with views [7] that decouple the container interfaces from the underlying storage.
The skeletons framework [36] allows the user to express an application as a
composition of simpler parallel patterns (e.g., map, reduce, scan and others).

Algorithmic skeletons are instantiated at runtime as task dependence graphs
by the PARAGRAPH, stapl’s data flow engine. It enforces task dependencies and
is responsible for the transmission of intermediate values between tasks.
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Fig. 1. STAPL components

The runtime system (stapl-rts) [29,35] provides portable performance by
abstracting the underlying platform with the concept of locations. A location is
a component of a parallel machine that has a contiguous memory address space
and has associated execution capabilities (e.g., threads). Locations only have
access to their own address space and communicate with other locations using
Remote Method Invocations (RMIs) on distributed objects (p objects).

Containers and PARAGRAPHs are both distributed objects (i.e., p objects).
RMIs are used in the containers to read and write elements. RMIs are used in
the PARAGRAPH to place tasks, resolve dependencies, and flow values between
tasks that are not on the same location.

Each p object has an associated set of locations on which it is distributed.
The stapl-rts abstracts the platform and its resources, providing a uniform
interface for all communication in the library and applications built with it.
This abstraction of a virtual distributed, parallel machine helps stapl support
general nested parallelism.

4 Asynchronous Nested Parallelism in stapl

As with stl programs, a typical stapl application begins with the instantiation
of the necessary data structures. Each container has its own distribution and
thus defines the affinity of its elements. Container composition is supported, as
well as complete control over the distribution of each container (e.g., balanced,
block cyclic, arbitrary). For example, the graph algorithms presented in Sect. 5.2
execute on composed instances of the stapl array for vertex and edge storage,
with various distribution strategies considered for each nested edge list. Users
write applications with the help of skeletons [36] and views, that abstract the
computation and data access, respectively. The views provide element locality
information, projecting it from the underlying container.

An algorithm’s execution is performed by a PARAGRAPH, a distributed task
dependence graph responsible for managing task dependencies and declaring
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Fig. 2. Execution model

which tasks are runnable. Each PARAGRAPH executes in an isolated environment,
with data access provided by the views. Each task may itself be a parallel algo-
rithm, for which a new nested parallel section is created. A default policy places
a PARAGRAPH for execution based on the locality of the data it accesses, and
custom policies can be passed to the PARAGRAPH at creation. Figure 2 shows an
example execution instance of an application that has a number of PARAGRAPH
invocations in isolated parallel sections over the same set of hardware resources.

4.1 stapl Design Considerations

In order to take advantage of nested parallelism and realize its full potential, we
have made several design decisions that influence our implementation including:

Expressiveness. stapl users express algorithms as a composition of simpler
parallel algorithms using algorithmic skeletons [36]. This specification is inde-
pendent of any target architecture. The responsibility for mapping it onto the
machine is left to the library, though it can be customized by more experienced
users at an appropriate level of abstraction.

Preserving Algorithm Structure. We maintain the hierarchy of tasks defined
by the application when mapping it to the machine. Hence, each nested section’s
tasks remain associated with it and are subject to its scheduling policy. Each
algorithm invocation is run within an SPMD section, from which both point-to-
point and collective operations are accounted for independent of other sections.
The SPMD programming model has been chosen since scaling on distributed
machines has favored this programming model (e.g., MPI [25]) more than fork-
join or task parallel models.

Parallel Section Isolation. stapl parallel sections exhibit controlled isolation
for safety and correctness. The uncontrolled exchange of data between parallel
sections is potentially unsafe due to data races. Performance can be impacted, as
isolation means that collective operations and data exchanges are in a controlled
environment. We discuss techniques to mitigate these overheads in [29]. Users
provide views to define the data available for access in each section.
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Asynchronous, One-sided Parallel Section Creation. We support both
partitioning (collective creation) of existing environments and spawning (one-
sided creation) of new environments. Partitioning existing parallel sections is
beneficial for static applications but is difficult to use in dynamic applications.
On the other hand, one-sided creation may not give optimal performance for
static applications where the structure of parallelism is more readily known.

In this paper, we only present the one-sided world creation, as the collective
implementation is similar to other systems for subgrouping (e.g., Titanium, MPI
and others). One-sided creation is fully asynchronous. This allows us to effec-
tively hide latency and supports our always distributed memory model. Table 1
summarizes the main differences between our model and similar approaches.

Table 1. Nested Parallelism (NP) capabilities comparison

Name SPMD NP
sections

Asynchronous Locality aware Any algorithm
allowed in NP
section

MPI Yes No Manual Yes

UPC++,
Co-Array
Fortran,
Titanium

Yes No Manual Yes

Sequoia Yes No Compile-time Yes

Habanero, X10 No Yes Yes Yes

Chapel No Yes Yes No

Charm++ No Yes Yes Yes

Legion No Yes Yes Yes

Phalanx Yes Yes Manual Yes

STAPL Yes Yes Yes Yes

4.2 Execution Model

The stapl-rts presents a unified interface for both intra-node and inter-node
communication to support performance portability. Internally the mixed-mode
implementation uses both standard shared and distributed memory communi-
cation protocols when appropriate. For scalability and correctness, we employ a
distributed Remote Method Invocation (RMI) model.

Each processing element together with a logical address space forms an iso-
lated computational unit called a location. Each location has an isolated, virtual
address space which is not directly accessible by other locations. When a loca-
tion wishes to modify or read a remote location’s memory, this action must be
expressed via RMIs on distributed objects, called p objects.

Gangs represent stapl-rts subgroup support. Each gang is a set of N locations
with identifiers in the range [0, . . . , N − 1] in which an SPMD task executes.
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It has the necessary information for mapping its locations to processing ele-
ments and describing a topology for performing collective operations. While the
locations of a gang execute a single SPMD task, they communicate asynchro-
nously independently of each other, making them a more loosely knit group than
for example MPI groups or Titanium/UPC teams. To create a new gang, one
either:

– Partitions an existing gang with collective gang creation over the locations
that participate in the new gang.

– Spawns a gang, whereby one location creates a new gang in an asynchronous
and one-sided manner, using a subset of locations in an existing gang.

p objects can be created within a gang, and as such, each p object is asso-
ciated with exactly one gang and is distributed across its locations. A gang can
have any number of p objects. Each p object can be referenced either with a
regular C++ reference inside the gang it was created or through handles.

4.3 One Sided Gang Creation

The stapl-rts provides primitives for the one-sided creation of gangs via allo-
cating p objects on a set of pre-existing locations. An example is shown in
Fig. 3. The first construct call creates a new parallel section over the locations
{0, 2, 4, 5, 6} of the current section and creates an instance of T. The second
construct call creates an object of type U in a new gang that is co-located with
the gang of the previous object.

Multiple variations are supported, such as creating gangs on arbitrary ranges
of locations (or all) of either the current parallel section or that of another
p object. The stapl-rts is responsible for translating location IDs to processing
element (PE) IDs and for building a suitable multicast tree on the PEs which it
uses to construct the gang and the associated p object. We plan on extending
this support to define gangs over specific parts of an hierarchical or heterogeneous
machine, such as over a specific socket or accelerator.

A gang’s lifetime is tied to that of the p objects present in it (see Fig. 4).

1 using namespace s t ap l ;
2

3 // Create a p ob je c t o f type T by passing args to the constructor , in a
new gang over the given loca t ions and return a fu tu re to i t s handle

4 fu ture< > f 1 =
5 construct<T>( l o c a t i on range , {0 , 2 , 4 , 5 , 6} , a rgs . . . ) ;
6

7 // Get ob je c t handle
8 auto h = f1 . ge t ( ) ;
9

10 // Create a new p ob je c t o f type U on a new gang co−l o ca t ed with the
gang of the f i r s t ob je c t

11 fu ture< > f 2 =
12 construct<U>(h , a l l l o c a t i o n s , args . . . ) ;

Fig. 3. Construct example usage.
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Fig. 4. Metadata transition diagram Fig. 5. Construct vs MPI on 512
processes on Cray XK7m-200

– Upon construction, the gang is created. The necessary metadata is generated
and everything is set up to execute the SPMD task.

– When the task executes, the gang is declared running. While the task exe-
cutes, p objects can be created and they are automatically associated with
the gang. The scope of the automatic p objects (stack allocated) is the
scope of the SPMD task, however heap-allocated p objects can outlive it.

– If the task finishes and there are no associated p objects, the gang is ter-
minated and its metadata is deleted.

– If there are still p objects associated with the gang, then it is declared alive
and its metadata preserved. The gang remains alive until the last p object
is deleted. RMIs can still be invoked on the p objects.

Figure 5 presents a micro benchmark of the construct primitive on a Cray
XK7m-200 (described in Sect. 5). It compares our range-based construct against
MPI Comm create over the same number of processes, when the global parallel
section is 512 processes. The combined effect of asynchronous creation and dele-
tion, as well as the fact that the MPI primitive is collective over the set of
processing elements (our primitive is one-sided), result in competitive perfor-
mance against MPI and shows that it is a scalable approach.

5 Experimental Evaluation

We performed our experiments on two different systems. The code was compiled
with maximum optimization levels (-DNDEBUG -O3).

Cray is a Cray XK7m-200 with twenty-four compute nodes of 2.1GHz AMD
Opteron Interlagos 16-core processors. Twelve nodes are single socket with 32
GB RAM, and twelve are dual socket with 64 GB RAM. The compiler was gcc
4.9.2.

BG/Q is an IBM BG/Q system at Lawrence Livermore National Laboratory.
It has 24, 576 nodes, each with a 16-core IBM PowerPC A2 processor at 1.6 GHz
and 16 GB of RAM. The compiler used was gcc 4.7.2.
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Fig. 6. min element on array<array<int>> (log-log graph)

5.1 Minimum Element on Composed Containers

In this section, we make the case that nested parallelism can be a solution to work
imbalance. We compare a nested parallel implementation of finding the mini-
mum element over a composed container (stapl::array<stapl::array<int>>)
against a flat parallel implementation with a distributed container of non-distri-
buted containers (stapl::array<std::vector<int>>).

For the stapl::array<std::vector<int>> version we find the minimum
element by invoking a parallel stapl::min element algorithm over the results
of std::min element calls over the inner std::vector<int> containers whereas
for the container composition version (stapl::array<stapl::array<int>>) we
recursively call stapl::min element over the outer and the inner containers.

We intentionally create imbalance, by setting the number of elements of each
inner container ci to 10000+400000∗i ints, where i is the index of c in the outer
container C (ci = C[i]). For example when C has 512 inner containers, c0 has
10000 ints and c511 has 204810000 ints. In Fig. 6 we compare the two versions
in which the outer container, C, is a stapl::array with n elements, where n is
the total number of locations that the experiment is run on. The inner containers
c are either std::vector<int> for the flat implementation of minimum element
or stapl::array<int> for the nested parallel implementation.

In the case of stapl::array<stapl::array<int>> the inner containers are
distributed across all n locations. While we over-distribute the inner containers,
in turn increasing the number of concurrent nested parallel sections that find the
minimum element in the inner containers, invoking nested parallel algorithms,
presents the benefit of more efficiently distributing the work across the system.
This results in better performance, up to 2.64x at 4 locations and 1.16x at
512 locations. As the number of location increases, the cost of creating and
scheduling nested parallel sections over all the locations diminishes the benefits;
this suggests that the nested containers should be distributed across subsets of
locations in the application, something we intend to explore.
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5.2 Graph Algorithms

Processing large-scale graphs has become a critical component in a variety of
fields, from scientific computing to social analytics. An important class of graphs
are scale-free networks, where the vertex degree distribution follows a power-law.
These graphs are known for the presence of hub vertices that have extremely high
degrees and present challenges for parallel computations.

In the presence of hub vertices, simple 1D partitioning (i.e., vertices distrib-
uted, edges colocated with corresponding vertex) of scale-free networks presents
challenges to balancing per processor resource utilization, as the placement of
a hub could overload a processor. More sophisticated types of partitioning have
been proposed, including checkerboard 2D adjacency matrix partitioning [6],
edge list partitioning [30] and specialized techniques for distributing hub vertices
[17,31]. However, these strategies often change both the data representation as
well as the algorithm, making it difficult to unify them in a common framework.

We represent the graph as a distributed array of vertices, with each ver-
tex having a (possibly) distributed array of edges. Using construct, we define
several strategies for distributing the edges of hub vertices, that can be inter-
changed without changing the graph algorithm itself. The first distribution strat-
egy (EVERYWHERE) places a hub’s adjacency list on all locations of the graph’s
gang. The second (NEIGHBORS) places the edges only on locations where the hub
has neighbors. This strategy is especially dynamic as the distribution of each
hub edge list is dependent on the input data. Thus, we rely heavily on the arbi-
trary subgroup support of stapl-rts. The last strategy (STRIPED) distributes
the adjacency list on one location per shared-memory node in a strided fashion
to ensure that no two hubs have edges on the same location.

Even though the distribution strategy of the edges changes, the edge visit
algorithm remains unchanged; the PARAGRAPH executing the algorithm queries
the edge view about the locality of the underlying container and transparently
spawns the nested section onto the processing elements where locations in the
container’s gang are present. This one-sided, locality driven computational map-
ping is a natural fit for the application and allows easily experimentation with
novel and arbitrary mappings of the edges to locations, without the overhead of
rewriting and hand-tuning the algorithm to support these changes.

We implemented the Graph 500 benchmark [1], which performs a parallel
breadth-first search (BFS) on a scale-free network. Figure 7(a) shows the BFS
algorithm on the Graph 500 input graph. As shown, all three edge distribution
strategies fare well over the baseline of non-distributed adjacency lists for modest
number of hubs, and then degrade in performance as more vertices are distrib-
uted. The EVERYWHERE and NEIGHBORS strategies behave similarly, as the set of
locations that contain any neighbor is likely to be all locations for high-degree
hub vertices. The EVERYWHERE and NEIGHBORS strategies are 49 % and 51 % faster
than the baseline, respectively. The STRIPED strategy performs up to 75 % faster
than the baseline, which is a further improvement over the other strategies. On
Cray, cores exhibit high performance relative to the interconnect, and thus mod-
est amounts of communication can bring about large performance degradation.
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Fig. 7. Graph 500 breadth-first search on Cray varying (a) the number of hubs on 512
processors and (b) the number of processors for a weak scaling experiment.

The STRIPED strategy reduces the amount of off-node communication to create
the parallel section from the source vertex location, bringing the performance of
the algorithm above the other two strategies. We are investigating this phenom-
enon to derive a rigorous model for distributing edge lists.

Figure 7(b) shows a weak scaling study of the neighbor distribution strategy
on Cray. As shown, the flat BFS scales poorly from 1 to 2 processors due to an
increase in the amount of communication. By distributing the edges for hubs,
we reduce this communication and provide better performance than the flat
algorithm. The number of distributed hubs must be carefully chosen: too few
hubs will not provide sufficient benefit in disseminating edge traversals, whereas
too many hubs could overload the communication subsystem.

In order to evaluate our technique at a larger scale, we evaluated BFS on the
Graph 500 graph on BG/Q in Fig. 8(a). We found that although faster than the
flat version, all three distribution strategies performed comparably with each
other. At 4,096 processors, the distributed adjacency list versions of BFS are
2.25x faster than the flat baseline. Hence, the distribution strategy is machine-
dependent, further reinforcing the need for a modular and algorithm-agnostic
mechanism to explore the possible configuration space for nested parallelism in
parallel graph algorithms.

Finally, to show the generality of our approach we implement two other
popular graph analytics algorithms: Hash-Min connected components (CC) [13]
and PageRank [28] (PR). In Fig. 8(b) we present the oracle speedup of the nested
parallel versions over the flat version, where speedup is measured as the ratio
between the best configuration and hub count for the nested parallel version
and the flat version. All three algorithms show marked improvement for all core
counts except for 1, where the nested section creation overhead is measured.
The nested parallel version is able to achieve upwards of 3x speedup, such as on
connected components at 32 cores.
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Fig. 8. Graph 500 (a) breadth-first search with various adjacency distributions on
BG/Q and (b) various graph analytics algorithms on Cray.

6 Conclusion

In this paper we presented support for one-sided, asynchronous nested paral-
lelism in stapl-rts. It is utilized in stapl for the implementation of composed
containers and the PARAGRAPH which manages algorithm execution. These com-
ponents provide flexible support for nested parallelism, with intelligent place-
ment of parallel sections based on the abstract locality information provided by
our runtime. We demonstrated the benefit of the approach wth both container
composition and graph algorithms, where significant gains were attained by tun-
ing the locality of the data structure independent of the algorithm specification.

For future work, we want to implement other dynamic programs using the
one-sided nested parallel constructs. We also plan to use our graph framework
to explore other possible computation and data distribution strategies with the
aim of performance portability. We think these nested parallelism constructs are
applicable to a broad range applications, allowing stapl to provide a high level
of expressiveness, while still mapping efficiently onto large, distributed systems.
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Abstract. Model-based design is a very popular software development
method for developing a wide variety of embedded applications such as
automotive systems, aircraft systems, and medical systems. Model-based
design tools like MATLAB/Simulink typically allow engineers to graph-
ically build models consisting of connected blocks for the purpose of
reducing development time. These tools also support automatic C code
generation from models with a special tool such as Embedded Coder to
map models onto various kinds of embedded CPUs. Since embedded sys-
tems require real-time processing, the use of multi-core CPUs poses more
opportunities for accelerating program execution to satisfy the real-time
constraints. While prior approaches exploit parallelism among blocks by
inspecting MATLAB/Simulink models, this may lose an opportunity for
fully exploiting parallelism of the whole program because models poten-
tially have parallelism within a block. To unlock this limitation, this
paper presents an automatic parallelization technique for auto-generated
C code developed by MATLAB/Simulink with Embedded Coder. Specif-
ically, this work (1) exploits multi-level parallelism including inter-block
and intra-block parallelism by analyzing the auto-generated C code, and
(2) performs static scheduling to reduce dynamic overheads as much
as possible. Also, this paper proposes an automatic profiling framework
for the auto-generated code for enhancing static scheduling, which leads
to improving the performance of MATLAB/Simulink applications. Per-
formance evaluation shows 4.21 times speedup with six processor cores
on Intel Xeon X5670 and 3.38 times speedup with four processor cores
on ARM Cortex-A15 compared with uniprocessor execution for a road
tracking application.

Keywords: Automatic parallelization · Multi-core · Model-based
design · MATLAB/Simulink · Automatic code generation

1 Introduction

The Model-based design like MATLAB/Simulink [1] has been widely used since
it enables high software productivity in reduced turn-around times for embedded
c© Springer International Publishing Switzerland 2016
X. Shen et al. (Eds.): LCPC 2015, LNCS 9519, pp. 125–139, 2016.
DOI: 10.1007/978-3-319-29778-1 8
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systems [2]. Commercial model-based design tools support auto-code generation
from a model that is represented by a block diagram [3,4]. MATLAB/Simulink
is one of the most popular tools for the model-based design of automotive sys-
tems, aircraft systems, and medical systems. This tool can generate C/C++
code for embedded systems with Embedded Coder [5] (formerly known as Real-
Time Workshop). The automatic code generation feature saves programmers
from developing embedded applications in error-prone programming languages,
however, this code generator does not optimize the application for target sys-
tems. Of course, it does not parallelize the application, even though a target
system has a multi-core processor.

Several approaches have been proposed to utilize multi-cores for the appli-
cation developed in MATLAB/Simulink. Some products have supported semi-
automatic parallelization techniques for a multi-core processor using task
partitioning by an application developer [6,7]. These technique can achieve a func-
tional distribution of MATLAB/Simulink application, but cannot reduce load
balancing which is most important for embedded real-time application. In addi-
tion, these tools support parallel processing in limited environments for simulation
using Simulink. For an automatic parallelization of MATLAB/Simulink appli-
cations, Arquimedes et al. proposed an automatic equation-level parallelization
technique of a Simulink model [8]. Their approach exploited parallelism among
Mealy blocks such as integrators, derivatives, unit delays and so on. However,
their method is only applicable to applications for simulation including mealy
blocks. This approach does not focus on embedded systems. As an automatic par-
allelization technique for embedded applications, Kumura et al. proposed a model
based parallelization by analyzing of dependencies from block connections among
Simulink blocks [9]. This technique makes it possible to perform a parallel process-
ing by exploiting block level parallelism from a model. However, exploiting this
parallelism does not always allow us to exploit the full capability of multi-cores
since a granularity of task depends on how the MATLAB/Simulink users define
a block. A model information is too abstract to represent multi-grain parallelism
including parallelism intra-blocks such as library Simulink blocks and users cus-
tomized blocks. Therefore, this may lose an opportunity for optimizations, for
example, by causing unequal workload on each core.

Unlike these prior approaches, this paper proposes an automatic paralleliza-
tion method using an automatic multigrain parallelizing compiler, or the OSCAR
compiler [10] from auto-generated C code developed by MATLAB/Simulink.
While this approach successfully analyzes the C code because it is easy for
the compiler to exploit parallelism using pattern matching and the code does
not require a sophisticated pointer analysis for readability and MISRA-C, it
is possible that future versions of Embedded Coder could limit the analysis of
parallelism. The compiler exploits both of coarse grain parallelism inter-block
and loop level parallelism intra-block from the auto-generated C code. Then,
the compiler adjusts a task granularity with the minimum overhead by per-
forming inline expansion and task fusion for conditional branches to improve
the utilization of each core. After optimization, the compiler assigns parallel
task onto processor cores using a static task scheduling considering profiling
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information on MATLAB/Simulink. Then, the compiler finally generates paral-
lelized C code regardless of target processors. Although this paper focuses on
the application developed by MATLAB/Simulink, the proposed method has a
potential to apply to other model-based design tools since it exploits parallelism
from the auto-generated C code regardless of a grammar of the tools. The fea-
tures of the proposed method include:

– Fully automatic parallelization technique of the C code generated by a model-
based design tool for embedded systems without dependence on a grammar
of this tool.

– Construction of automatic profiling framework for a MATLAB/Simulink
model to improve performance of the statically scheduled parallel code.

– Multigrain parallelization technique of model-based design applications that
enables to overcome the limitation of the block level parallelization technique
that is common in the field of model-based design.

The rest of this paper is organized as follows: Sect. 2 provides a framework for
parallelization of model-based design applications. Section 3 introduces how to
exploit parallelism from MATLAB/Simulink application using the OSCAR com-
piler. Section 4 describes multi-grain parallel processing method for the appli-
cations. Section 5 shows performance evaluation for the applications using the
proposed method. Finally, Sect. 6 represents some conclusions.

Fig. 1. Overview of the proposed framework for parallelization of model-based design
applications

2 Framework for Parallelization of Model-based Design
Applications

This section describes a framework for parallelization of model-based design
applications. The model-based design tools with an automatic code generator like
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MATLAB/Simulink are widely used since it enables high software productivity
for embedded systems. However, the code generator like Embedded Coder does
not optimize the application for target multi-cores. Therefore, several researchers
have proposed the parallelization technique for the application on multi-cores.
The previous works [8,9] analyzed a model file model.mdl to exploit parallelism
among blocks in the model. This may lose an opportunity to exploit the whole
parallelism in the model. For example, their approaches lose to exploit hierarchi-
cal multigrain parallelism, even though a model has parallelism inner Simulink
blocks. It may cause unequal workload on each core. Additionally, they depend
on a grammar of the model-based design tool. Indeed, the model file model.mdl
have changed to a new model file model.slx from MATLAB R2012a.

In contrast, our proposed method analyzes auto-generated C code developed
by MATLAB/Simulink with Embedded Coder to exploit hierarchical multigrain
parallelism which is not represented in the model file. This approach does not
depend on the grammar of model-based design tools since it analyzes the code
to extract parallelism. Additionally, the proposed framework uses profiling infor-
mation including execution counts and time to handle dynamic features of pro-
grams such as conditional branches and fluctuations in the number of iterations
of loops.

Figure 1 shows an overview of the proposed framework. At the step1, the
OSCAR compiler analyzes C code that is generated by Embedded Coder from
a model. Then, the compiler instruments a sequence of C code inserting profile
functions and the MATLAB/Simulink interface (MEX function [11]). This code
is used to gather profiling information about a program execution on MAT-
LAB/Simulink. Thereby, this framework can gather the profiling information
in software-in-the-loop simulation (SILS) or processor-in-the-loop simulation
(PILS) on the model-based design tool. Then, the profiler generates the pro-
filing information during executing a model including the profile C code. At the
step2, the compiler analyzes the auto-generated C code and exploits hierarchi-
cal multigrain parallelism in the whole program. After exploiting parallelism,
the compiler schedules parallel tasks onto processor cores and finally generates
parallelized C code using the profiling information.

3 Exploiting Parallelism Using the OSCAR Compiler

This section explains a method to exploit multigrain parallelism from auto-
generated C code developed by MATLAB/Simulink using the OSCAR compiler.

3.1 Example of MATLAB/Simulink Application

This paper takes an example of MATLAB/Simulink application to describe the
parallelism in it. The example is simple to explain parallelism of the model, how-
ever, real applications are too sophisticated to extract all parallelism because
there are many of block connections and feedback loops. Therefore, it is diffi-
cult to achieve efficient performance on multi-cores using manual parallelization.
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Fig. 2. Sample Simulink model and auto-generated C code from the model using the
Embedded Coder

Figure 2(a) shows a model of Sobel filter that performs edge detection of a binary
image. It consists of a Const block, a Divide block, MATLAB Function blocks
(user’s library functions) named as CalcGx and CalcGy, and a Subsystem block
named as Norm. Evidently, the model has parallelism among CalcGx and CalcGy
because there is no connection among them.

Figure 2(b) shows auto-generated C code from the model in Fig. 2(a) by
Embedded Coder. A loop as shown in line 4–6 corresponds to the Divide block
in Fig. 2(a). Each of functions of Sobel CalcGx and Sobel CalcGy corresponds
each of the MATLAB Function blocks named as CalcGx and CalcGy in Fig. 2(a).
A function of Sobel Norm corresponds to the Subsystem block named as Norm
in Fig. 2(a).

3.2 Coarse Grain Task Parallel Processing

Coarse grain task parallel processing uses parallelism among three kinds of coarse
grain tasks, namely macro-tasks (MTs). Parallelism is expressed graphically as a
macro-task graph (MTG) including data dependencies and control dependencies
among MTs. The MTs on the MTG are assigned to processor cores by a static or
a dynamic task scheduling method. As a result of the assignment, the OSCAR
compiler generates parallelized C code while preserving the original semantics
of the program.

Generation of Macro-Tasks. In the coarse grain task parallelization of the
OSCAR compiler, auto-generated C code from a MATLAB/Simulink model is
decomposed into the MTs. The MTs include basic blocks (BBs), repetition blocks
or loops (RBs), and subroutine blocks (SBs). The MTs can be hierarchically
defined inside each sequential loop or a function [10]. Moreover, the RB is trans-
formed LOOP, which means the compiler analyzes this loop as a sequential loop,
or DOALL which means the compiler analyzes this loop as a parallelizable loop.

Exploiting of Coarse Grain Task Parallelism. After generation of MTs,
data dependencies, and control flow among MTs are analyzed. The compiler
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generates a hierarchical macro-flow graph (MFG) which represents control flow
and data dependencies among MTs [10].

Then, the Earliest Executable Condition Analysis [10] is applied to the MFG
to exploit coarse grain task parallelism among MTs by taking into account both
the control dependencies and the data dependencies. This analysis generates a
hierarchical macro-task graph (MTG). The MTG represents coarse grain task
parallelism among MTs. If SB or RB has nested inner layer, MTGs are gener-
ated hierarchically. Figure 3 shows a hierarchical MTG of the C code in Fig. 2(b).
Nodes represent MTs. Small circles inside a node represents conditional branches,
for example, bb1 and bb4 in MTG2-1. Solid edges represent data dependencies.
Dotted edges in MTG2-1, MTG3-1, and MTG4-1 represent extended control
dependencies. The extended control dependency means ordinary control depen-
dency and the condition on which a data dependence predecessor of an MT is
not executed. Solid and dotted arcs, connecting solid and dotted edges have two
different meanings. The solid arc represents that edges connected by the arc are
in AND relationship. The dotted arc represents that edges connected by the
arc are in OR relationship. In an MTG, edges having arrows represents original
control flow edges or branch direction.

sb2 and sb3 in MTG0 are in parallel. Therefore, block level parallelism
among CalcGx and CalcGy in Fig. 2 (a) are exploited from the auto-generated
C code. Additionally, loop level parallelism which is not represented in Fig. 2(a)
is exploited from the auto-generated C code since the compiler analyzes doall
in Fig. 3 as parallelizable loops. Therefore, coarse grain task parallel process-
ing using the compiler allows us to exploit hierarchical multigrain parallelism of
MATLAB/Simulink applications from the auto-generated C code.

Fig. 3. Hierarchical MTG
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Scheduling of Coarse Grain Task onto Multi-cores. After exploit of
hierarchical multigrain parallelism, a static task scheduling or a dynamic task
scheduling is chosen for each MTG to assign MTs onto multi-cores. If an
MTG has only data dependencies and is deterministic, a static task schedul-
ing at compilation time is applied to it by the OSCAR compiler. In the static
task scheduling, the compiler uses four heuristic scheduling algorithms includ-
ing CP/ETF/MISF, ETF/CP/MISF, DT/CP/MISF and CP/DT/MISF [12].
The compiler chooses the best schedule from those scheduling. If an MTG is
non-deterministic by conditional branches or runtime fluctuations among MTs,
the dynamic task scheduling at runtime is applied to it to handle the run-
time uncertainties. The compiler generates dynamic task scheduling routines
for non-deterministic MTGs and inserts it into a parallelized code. The static
task scheduling is generally more effective than the dynamic task scheduling
since it can minimize data transfer and synchronization an overhead without a
runtime scheduling overhead.

Parallelized C Code Generation Using the OSCAR API. The OSCAR
compiler generates parallelized C code with the OSCAR API [13] that is designed
on a subset of OpenMP for preserving portability over a wide range of multi-core
architectures. If data is shared on threads, the compiler inserts synchronizing
instructions using spin locks. Additionally, MEX functions are inserted as neces-
sary to execute parallelized C code in the SILS or PILS on MATLAB/Simulink.

4 Multigrain Parallel Processing Method
for MATLAB/Simulink Applications

This section describes a proposed multigrain parallel processing method for
MATLAB/Simulink applications. Embedded applications are generally executed
repeatedly within a short period. Therefore, reducing overhead as much as pos-
sible is important for efficient parallel processing on multi-cores. The proposed
method enables us to parallelize the application using hierarchical multigrain
parallelism with a minimum overhead for embedded systems. The kernel tech-
nique is to generate the statically scheduled parallel code using multigrain par-
allelism. The proposal method consists of the following steps.

Step1. Automatic profiling in SILS or PILS on MATLAB/Simulink to handle
dynamic features of programs.

Step2. Inline expansion to exploit more parallelism over hierarchies or program
structure.

Step3. Macro task fusion for conditional branches to generate statically sched-
uled parallel code.

Step4. Converting loop level parallelism into task level parallelism to perform
efficient parallel processing among loops and other MTs without an overhead
of loop level parallelization.

The following provides details of the proposed method.
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4.1 Automatic Profiling in Model-based Development

Profiling is an important technique for improving the preciseness of static task
scheduling by a parallelizing compiler. Moreover, it is particularly effective for
handling dynamic features of programs such as conditional branches and the
fluctuations in the number of loop iterations. For this purpose, the compiler
generates a sequence of code to collect profiling information. Additionally, MEX
functions as the interface between C code and MATLAB/Simulink are inserted
into this code to obtain the profiling information in the SILS or the PILS on
the model-based tool. Two types of profile functions are inserted immediately
before and after each MT. The one is a function to measure execution counts of
each MT. This information is utilized for estimating branch probability and the
number of loop iterations. The other is a function to measure the execution time
of each MT. This information is utilized for optimization and the static task
scheduling in the compiler. In the other words, execution counts and time in the
level of MT are attained with executing the code. The profiler finally generates
the profiling information including longest path, shortest path, and average path
in repeated executions during executing a model including the profile C code.

4.2 Inline Expansion

The OSCAR compiler generates a hierarchical MTG to perform hierarchical par-
allelization [10]. It is effective to perform parallel processing for applications hav-
ing large execution time, for example, simulation of scientific computation. How-
ever, real embedded applications are generally executed repeatedly within a short
period. Therefore, it is not enough parallelism to parallelize efficiently in each
hierarchy. Thus, the proposed method uses an inline expansion technique [14]

Fig. 4. Overview of the inline expansion technique
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to exploit multigrain parallelism from programs over hierarchies or nested lev-
els. This technique analyzes parallelism after each SB is inline expanded. After
the analysis, the compiler selects SBs to improve parallelism and expands them.
Figure 4 shows an overview of the inline expansion technique. In Fig. 4(a), it
is not enough parallelism to parallelize hierarchically in MTG0, MTG1, and
MTG3. The inline expansion applies sb2 in MTG0 including parallelism inner
the block to improve parallelism. As a result, the compiler generates an MTG in
Fig. 4(b). As shown in Fig. 4(b), more coarse grain parallelism is exploited than
that of the MTG in Fig. 4(a).

4.3 Macro Task Fusion

The OSCAR compiler has two types of task scheduling as mentioned in Sect. 3.2.
The one is the dynamic task scheduling that is applied to an MTG including
conditional branches. The other is the static task scheduling that is applied to
an MTG including no conditional branches. The static task scheduling is prefer-
able for parallelization of the embedded applications because of its few run-
time overhead. However, most of MATLAB/Simulink applications have Switch,
Saturation and Trigger blocks that are converted into if-statements by Embed-
ded Coder. It introduces to choose the dynamic task scheduling including the
runtime overhead. Since these conditional branches cannot be handled by the
static task scheduling, the proposed scheme applies macro task fusion to MFG
to hide conditional branches inside MTs. The method is described as follows.

Step 1. Search MFG nodes having a conditional branch.
Step 2. For each conditional branch node found in step 1, apply step 3–6.
Step 3. Search a set of MFG nodes that is post-dominated by the conditional

branch node.
Step 4. Define a post-dominator node having a minimum number of the MT

with the exception of the conditional branch node as an exit node.
Step 5. Merge a group from the conditional branch node and the exit node into

a single MT.
Step 6. Generate a fused MT including conditional branches inner the MT.

This process eliminates all conditional branches from an MFG. After the tech-
nique, if the fused MT has enough parallelism inner the MT, duplications of
if-statements [15] is applied to it for an improvement of parallelism.

Figure 5 shows an overview of the macro task fusion technique. At the step 1,
the compiler searches MFG nodes having a conditional branch from an MFG. At
the step 2, the compiler applies step 3–6 to each conditional branch node found
step 1. At the step 3, the compiler searches a post-dominator of the conditional
branch node. At the step 4, the compiler chooses a node having a minimum
number in the post-dominators with the exception of the conditional branch
node. Then, the node is defined as an exit node of the conditional branch node.
At the step 5, the compiler merges a group from the conditional branch node
and the exit node into a single MT. As a result, the compiler generates a fused
MT including conditional branches inner the MT at the step 6.
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In this example, the compiler chooses bb1 and bb7 having a small circle
inside a node that represents a conditional branch in Fig. 5(a). In Fig. 5(a), bb1
dominates bb1, bb5, sb6, bb7, bb10 and emt11. Additionally, bb7 dominates
bb7, bb10 and emt11. Therefore, the compiler chooses bb5 and bb10 as the exit
node for each of the conditional branch nodes. Merging bb1--5 and bb7--10,
the compiler generates an MFG as shown in Fig. 5(b). In this figure, block
shows the merged MT by the technique. Exploiting parallelism using the Earliest
Executable Condition Analysis, the compiler generates an MTG as shown in
Fig. 5(c). Then, the duplication of if-statements applies to inner block3 not to
eliminate parallelism. bb1 including if-statements is duplicated, and block3 is
divided into two nodes. As a result, the compiler generates an MTG having
duplicated MTs such as block3 and block4 as shown in Fig. 5(d). Thus, a
compiler coarsens MTs without losing parallelism and can apply static task
scheduling without runtime overhead to an MTG having conditional branches.

Fig. 5. Overview of the macro task fusion technique

4.4 Converting Loop Level Parallelism into Task Level Parallelism

Kumura et al. [9] has proposed the block level parallelization technique from the
data flow graph of the block diagram of a model. This method enables us to
exploit parallelism among blocks in the model. However, it is difficult to exploit
parallelism in a block using only information of the block diagram. In contrast,
this paper proposes the multigrain parallelization technique from auto-generated
C code. The code level analysis in this method enables us to exploit loop level
parallelism in addition to task level parallelism. In this paper, parallelizable
loops shown as Doall are decomposed into n small Doalls (or MTs) statically
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to perform parallel processing efficiently without a runtime overhead of loop
level parallelization. In this method, the n is a number decided by less than a
number of processor cores and Tmin. Tmin is defined as a minimum task cost for
loop level parallelization considering overheads of parallel thread fork/join and
task scheduling on each target multi-core [10].

These decomposed small Doalls can be executed in parallel among other MTs.
After parallelizable loop decomposition, the static task scheduler in Sect. 3.2
assigns all MTs including decomposed Doalls onto processor cores.

5 Performance Evaluation of MATLAB/Simulink
Applications on Multi-cores

This section describes performance evaluation of the proposed multigrain par-
allelization technique for MATLAB/Simulink applications on several multi-core
platforms.

5.1 Target MATLAB/Simulink Applications

This section evaluates the performance on Intel and ARM multi-cores using
three important applications such as road tracking for self-driving cars, ves-
sel detection for medical image recognition, and anomaly detection for pattern
recognition really used an industry. These applications have both parallelism
among Simulink blocks and inner a block. Therefore, they are suitable to be
parallelized by the automatic multigrain parallelization technique. Each appli-
cation is described in the following.

Road Tracking. Road tracking in a model of [16] is an image processing to
detect and track edges set in primarily residential settings where lane markings
may not be present. The model has over one hundred Simulink blocks and block
level parallelism among Simulink blocks in the left road and right road. The size
of an input image is 320× 240 pixels. In this evaluation, For Iterator blocks
are expanded and S-Function blocks of parallel Hough transformation [17] are
used instead of library Hough Transformation block to be close real embedded
applications.

Vessel Detection. Vessel detection model implemented from [18] is an image
processing to detect vessels from retinal images for a diagnosis of various eye
diseases. The model is simplest in the three applications and includes one Data
Type Conversion, one MinMax, one Switch and eight MATLAB Function blocks
using the Kirsch’s edge operator blocks. The operator blocks are in parallel. The
size of an input image is 200× 170 pixels.
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Anomaly Detection. Anomaly detection model is a real product applica-
tion in A&D CO., LTD. and an image processing to detect anomaly from
an input image. The model is most complex and has longest execution time
in the three applications. It includes morphological opening, morphological
dilation, blob analysis blocks and so on. There is parallelism among some
image processing block. The size of the input image is 600× 600 pixels.

5.2 Evaluation Environment

This evaluation uses the Intel Xeon X5670 and the ARM Cortex-A15. The Xeon
X5670 processor has six processor cores with each processor core running at
2.93 GHz. Each processor core has 32 KB L1-cache and 256 KB L2-cache. 12 MB
L3 cache is shared on six processor cores. The Cortex-A15 processor has four
1.60 GHz processor cores. Each processor core has 32 KB L1-cache, and four
processor cores has a shared 2 MB L2-cache.

5.3 Performance Evaluation on Multi-cores

Figure 6(a) and (b) shows average speedup obtained by using only the task
level parallelization technique that is similar to the single level parallelization
technique in [9] and the multigrain parallelization technique corresponds to pro-
posed method on Intel Xeon X5670 and ARM Cortex-A15. The speedups in
Fig. 6(a) and (b) are relative to sequential execution using only one core of each
application. 1.92 times speedup for the road tracking application, 2.65 times
speedup for vessel detection application and 2.50 times speedup for the anomaly
detection application can be achieved using the task level parallelization tech-
nique on Intel Xeon X5670 with six processor cores. On ARM cortex-A15 with
four processor cores, 1.94 times speedup for the road tracking application, 2.74
times speedup for the vessel detection application and 2.29 times speedup for the
anomaly detection application can be achieved using the task level parallelization
technique.

Fig. 6. Speedup ratio for MATLAB/Simulink applications on Intel and ARM
multi-cores
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In speedup of the proposed method, 4.21 times speedup for the road track-
ing application, 5.80 times speedup for the vessel detection application and
4.10 times speedup for the anomaly detection application can be achieved using
the multigrain parallelization technique on Intel Xeon X5670 with six proces-
sor cores. On ARM cortex-A15 with four processor cores, 3.38 times speedup
for the road tracking application, 3.56 times speedup for the vessel detection
application and 3.24 times speedup for the anomaly detection application can
be achieved using the multigrain parallelization technique. Therefore, the pro-
posed method attains 2.19 times speedup for the road tracking application, 2.19
times speedup for the vessel detection application and 1.64 times speedup for
the anomaly detection application compared with the execution using the task
level parallelization technique on Intel Xeon X5670 using six processor cores.
On ARM Cortex-A15 with four processor cores, 1.75 times speedup for the road
tracking application, 1.30 times speedup for the vessel detection application and
1.41 times speedup for the anomaly detection application compared with the
execution using the task level parallelization technique.

Fig. 7. Execution time per a frame for the road tracking application on Intel and ARM
multi-cores

Further, this paper describes execution time per a frame for the road tracking
application with a scatter per an input image. Figure 7(a) and (b) shows execu-
tion time per a frame on Intel Xeon X5670 and ARM Cortex-A15 for the road
tracking application. The upper lines in Fig. 7(a) and (b) show execution time of
ordinary execution. Each of the execution fluctuates from 1.705 ms to 4.728 ms
on Intel Xeon X5670 and from 10.58 ms to 32.36 ms on ARM Cortex-A15. The
middle lines in Fig. 7(a) and (b) show execution time using the task level paral-
lelization technique. Each of the execution fluctuates from 0.815 ms to 2.510 ms
on Intel Xeon X5670 with six processor cores and from 4.88 ms to 17.02 ms on
ARM Cortex-A15 with four processor cores. The lower lines in Fig. 7(a) and (b)
show the execution time using the multigrain parallelization technique. Each of
the execution fluctuates from 0.459 ms to 0.983 ms on Intel Xeon X5670 with
six processor cores and from 3.38 ms to 9.04 ms on ARM Cortex-A15 with four
processor cores. Clearly, each variance of the execution time of the multigrain

adrien.cassagne@inria.fr



138 D. Umeda et al.

parallelized program is much lower than that of each sequential program on each
processor. Therefore, the proposed method allows us to perform stable execution
regardless of on input image. In worst case of sequential execution time on each
processor, proposed method gives us 4.81 times speedup on Intel Xeon X5670
with six processor cores, and 3.72 times speedup on ARM Cortex-A15 with four
processor cores using the multigrain parallelization technique compared with the
sequential execution on each processor.

6 Conclusions

This paper has proposed the automatic multigrain parallelization scheme using
the OSCAR compiler for embedded applications developed by MATLAB/
Simulink. This scheme exploits multigrain parallelism from auto-generated C
code by Embedded Coder and optimizes this code. The proposed method
includes three techniques of the inline expansion, the macro task fusion of
conditional branches and the converting loop level parallelism into task level
parallelism. The inline expansion is used to exploit more parallelism over hier-
archies or nested levels. The macro task fusion is used to generate the statically
scheduled parallel code without the runtime overhead. The converting loop level
parallelism into task level parallelism is used to improve parallelism without
the overhead of loop level parallelization. Additionally, the proposed method
also includes the automatic profiling framework to improve performance of the
statically scheduled parallel code.

Using the proposed method, this paper parallelized three important appli-
cations such as road tracking for self-driving cars, vessel detection for medical
image recognition, and anomaly detection for pattern recognition really used an
industry. In the performance evaluation, the OSCAR compiler with proposed
method gave us 4.21 times speedup for the road tracking application, 5.80 times
speedup for the vessel detection application and 4.10 times speedup for the anom-
aly detection application on Intel Xeon X5670 with six processor cores. Moreover,
3.38 times speedup for road tracking, 3.56 times speedup for the vessel detec-
tion application and 3.24 times speedup for the anomaly detection application on
ARM Cortex-A15 with four processor cores. Comparing with the execution using
the task level parallelization technique that is similar to the previous method
for MATLAB/Simulink applications, the proposed method attained from 1.30
to 2.19 times speedup on different multi-cores such as Intel or ARM. The pro-
posed method has successfully improved performance applications developed by
MATLAB/Simulink on multi-core processors.
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Abstract. This work extends shared address programming to accelera-
tor clusters by pursuing a simple form of shared-address programming,
named HYDRA, where the programmer only specifies the parallel regions
in the program. We present a fully automatic translation system that
generates an MPI + accelerator program from a HYDRA program. Our
mechanism ensures scalability of the generated program by optimizing
data placement and transfer to and from the limited, discrete memories
of accelerator devices. We also present a compiler design built on a high-
level IR to support multiple accelerator architectures. Evaluation results
demonstrate the scalability of the translated programs on five well-known
benchmarks. On average, HYDRA gains a 24.54x speedup over single-
accelerator performance when running on a 64-node Intel Xeon Phi clus-
ter and a 27.56x speedup when running on a 64-node NVIDIA GPU
cluster.

1 Introduction

The past decade has seen a steady rise in the use of accelerators towards high-
performance computing. Many supercomputers rely on devices such as NVIDIA
or AMD GPUs and Intel Xeon Phis to accelerate compute-intensive workloads.
Various programming models and frameworks [8,14] have so far been proposed
to effectively use accelerators on individual compute nodes. As the productivity
of these frameworks has risen over the years, there is growing interest in pro-
gramming systems that can efficiently use accelerators on all nodes of a cluster.

Writing a program to exploit CPU clusters in itself is a tedious and error-
prone task. The need for accelerator programming adds further to this difficulty,
as the involved programming models differ substantially from those of common
CPUs. To achieve greater productivity, high-level programming models for accel-
erator clusters are needed.

In response to such requirements, this paper presents compiler and runtime
techniques required for a shared address programming model for accelerator
clusters. In our research, we pursue a simple model, called HYDRA, where pro-
grammers only specify parallel regions and shared data in the program. From
our observation, most parallel applications in well-known benchmark suites, such
as Rodinia [4], can be implemented using only this construct. To demonstrate
c© Springer International Publishing Switzerland 2016
X. Shen et al. (Eds.): LCPC 2015, LNCS 9519, pp. 140–155, 2016.
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the effectiveness of our techniques, we developed a source-to-source translation
system that converts a HYDRA program into an MPI + accelerator program
(referred to as accelerated MPI program hereafter).

There are two important performance factors for accelerator cluster programs:
single-accelerator speed and scalability across nodes. Researchers have previously
proposed advanced techniques for generating optimized single-accelerator code
from shared address programs [8,14]. By contrast, this paper focuses on the scal-
ability aspect, which is crucial, as large clusters are expected to efficiently process
increasingly large problem sizes. Optimization techniques for single accelerators
are insufficient. Realizing shared address programming with high scalability on
accelerator clusters poses the following three challenges. These challenges do not
exist on CPU clusters. Their solutions represent the specific contributions of this
paper.

1. The first challenge comes from the fact that, unliked CPUs, current acceler-
ators have discrete and limited memories. Full data allocation of today’s typical
problem sizes on accelerator memories could exceed available capacities. This
limitation would result in failure of single-accelerator execution and an inabil-
ity to scale to multiple nodes. Programmers of accelerated MPI code avoid this
problem by allocating only the part of the data accessed by each process of a
distributed program. By contrast, shared address programming hides the access
distribution from programmers and, instead, relies on the compiler or runtime
support to extract such information. The distribution of the data accesses is
related to the partitioning of the program computation. The system must be
aware of such partitioning to precisely allocate memory on accelerators. With-
out advanced analysis, a compiler may allocate the entire shared data on the
accelerator memory, which could result in the said failure. Our first contribution
overcomes this issue by introducing a precise compile-time memory allocation
method.

2. A second critical issue is related to the data transfer between accelerator
and host memory. Minimizing this transfer is critical for scalability. The challenge
lies in the single machine image of the shared address space, where programmers
do not specify data movements between CPU and accelerator memories. The
compiler, having to derive such transfer from the program, might send entire
shared data structures to/from accelerator memory, introducing excessive over-
head. Our second contribution introduces a compile-time solution to minimize
such transfers.

3. Both proposed techniques are architecture-agnostic. We show results on
two common accelerators: NVIDIA’s GPUs and Intel Xeon Phis (referred to as
MIC hereafter). Our compiler design includes support for multiple architectures.
Our third contribution lies in this design, which separates passes that are com-
mon across architectures and specialized passes for the target architectures. The
compiler takes HYDRA programs as input, and translates them into acceler-
ated MPI programs, using CUDA or OpenCL, depending upon the underlying
architecture.
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We demonstrate the efficacy of the proposed techniques by experiment-
ing with five common applications on two clusters of 64 nodes each; one has
NVIDIA GPUs, the other has Intel MICs. The speedup against optimized single-
accelerator performance is as high as 43.81x on a 64-node GPU cluster and 45.18x
on a MIC cluster.

The remainder of this paper is organized as follows. Section 2 describes the
baseline system on which HYDRA is built. Section 3 discusses the requirements
for the translation and our solutions. Section 4 describes the implementation
of the HYDRA translation system. Section 5 presents experimental results on
five benchmarks. We discuss related work in Sect. 6 and present conclusions in
Sect. 7.

2 Background

2.1 OMPD Baseline System

Our work builds on the OMPD [10] hybrid compiler-runtime system, which
enables OpenMP programs to utilize nodes of a distributed system.

The compiler is responsible to partition the program computation and to
perform the static part of the communication analysis. The compilation process
of OMPD consists of two phases: (1) program partitioning and (2) static com-
munication analysis. In program partitioning, the compiler divides the program
into sections, referred to as program blocks, each containing either serial code or a
parallel loop. The serial program blocks are replicated across processes while the
parallel blocks are work-shared. The parallel loop’s iterations are partitioned and
distributed across MPI processes. A barrier is placed at the end of each program
block, representing a potential communication point. The static communication
analysis performs array data flow analysis, described in Sect. 2.2, determining
local uses and local definitions of each program block. The compiler transfers
this information to the runtime system for complete communication analysis.

All inter-node communication is generated and executed at runtime. At each
barrier, the runtime system analyzes global uses, which determines future read
accesses of all data at any needed communication point. The communication
messages are determined by intersecting local definitions and global uses. The
runtime system uses this information to schedule communication and generate
MPI messages.

2.2 Array Data Flow Analysis

Array data flow analysis [11] enables the compiler to analyze the precise producer
and consumer relationships between program blocks. The result of the analysis
is a set of local uses and local definitions of each program block, at each barrier
in the program. Every process will have its own local definitions and local uses.
For shared array A at barrier i, the local use is denoted by LUSEA

i and local
definition by LDEFA

i , defined as
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LUSEA
i = {useA(i,j)|1 ≤ j ≤ n} (1)

LDEFA
i = {defA

(i,k)|1 ≤ k ≤ m} (2)

where each use represents a read access of array A in the program block after
barrier i and each def represents a write access of array A in the program block
before barrier i. n and m are the number of read accesses in the program block
after barrier i and the number of write accesses in the program block before
barrier i of array A, respectively. For a p-dimensional array A, each use and def
is defined as a pair of lower bound and upper bound accesses in each dimension
of the array. For dimension d, the lower and upper bound are represented as
[lbd : ubd]. An example of use and def for a p-dimensional array is as follows

useA(i,j) = [lbp−1 : ubp−1]...[lb1 : ub1][lb0 : ub0]

defA
(i,j) = [lbp−1 : ubp−1]...[lb1 : ub1][lb0 : ub0]

We extend this array data flow analysis framework for the new optimizations
described in Sect. 3.

3 Extending Shared Address Programming Beyond CPU
Clusters

Extending CPU-based shared address programming to support accelerator clus-
ters poses a number of challenges. While the model is convenient for users, the
programs abstraction hides information that is relevant for the translator. Thus,
the compiler needs sophisticated techniques to extract this information. The
need for such techniques is critical in our HYDRA programming model, as pro-
grammers only specify parallel regions and do not include such information as
data transfer and communication. Section 3.1 describes the model in more detail.

Our techniques deal with the fact that accelerators are independent compu-
tational components with separate address spaces, reduced memory capacities,
and diverse architectures. Section 3.2 explains these threee challenges in more
detail and presents our solutions.

3.1 HYDRA Programming Model

HYDRA is a directive-based shared address programming model offering a single
parallel loop construct

#pragma hydra parallel for [clauses]

The clauses are syntactically optional but might be needed for program seman-
tics. Table 1 lists all available clauses for the HYDRA parallel loop directive.
The shared, private, and firstprivate clauses specify characteristics of vari-
ables. Variables not listed explicitly are shared by default. The reduction clause
indicates that the annotated loop performs a reduction operation on variables
in varlist using operator op.
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Table 1. Parallel loop directive clauses

Clause Format Description

shared shared(varlist) List of shared variables.

private private(varlist) List of private variables.

firstprivate firstprivate(varlist) List of private variables, whose value must
be initiated before the start of the
parallel loop

reduction reduction(op:varlist) List of variables to perform reduction with
operator op

Despite HYDRA’s simplicity, many parallel applications can be implemented
using only this single HYDRA construct. All of our evaluation benchmarks were
available in the form of OpenMP programs. We generated HYDRA versions by
a simple, syntactic translation. We chose HYDRA instead of available models,
such as OpenACC and OpenMP, for research purposes, which are to explore
the concepts of the translation and the generic characteristic of shared-address
models.

3.2 Compiler Analyses for Accelerator Data Management

In distributed programming, the computation is partitioned and distributed
across processes. The programmer is responsible for doing so. HYDRA instead
holds the underlying compiler and runtime responsible for these tasks. Program-
mers do not need to express any information about access ranges of shared data.

The lack of such information may require the compiler to assume that each
process is accessing the entire data, although in reality, only a portion of the
data is being accessed. This problem is not critical in CPU clusters because of
large physical memory space and virtual address systems; however, accelerator
memory is much smaller and does not have virtual memory support. As the
typical problem sizes used on clusters are much larger than a single accelera-
tor’s memory, allocating the entire data required by the computation on each
accelerator would result in program failure due to insufficient memory. Even if
the data fits in the accelerator memory, another issue would arise: accelerator
memory is discrete and input data must be transferred to it before being used.
Transferring the entire data would introduce excessive overhead. Therefore, data
access information is crucial to the scalability of accelerator cluster programs.

Data Transfer Analysis. To minimize data transfers, a compiler analysis
must precisely identify the data accessed by each program block. The precise
access information can be identified by the union of read and write sections of
live data. The details of the analysis are as follows: The first part of our data
transfer analysis identifies the shared data that are live-in and live-out of a given
program block executing on the accelerators, Bi. This information can be derived
from the LUSE information, generated by the array data flow analysis described
in Sect. 2.2.
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Let Bri denote the barrier before Bi, Brf denote the future barriers that
the program will reach after Bi, and ShareV ar(Bi) denote the set of shared
variables accessed in the program block Bi. Let A ∈ ShareV ar(Bi). If there
exists LUSEA

Bri
, array A will be used in Bi and a data transfer from host to

accelerator is required. On the other hand, if there exists LUSEA
Brf

array A will
be used in the future, requiring a data transfer from accelerator to host.

If the analysis determines that a data transfer is required for an array A
at barrier Bri, the next step is to identify the section of array A that will
be transferred. The required section of an array A on each dimension can be
obtained as [lbmin,Bri : ubmax,Bri ] where lbmin,Bri is the minimum lower bound
of all local accesses of array A and ubmax,Bri is the maximum upper bound of all
local accesses of array A at barrier Bri in that dimension. Note that the upper
and lower bounds can be symbolic expressions. The analysis obtains lbmin,Bri

and ubmax,Bri by using the symbolic analysis capabilities of Cetus [1].

Memory Allocation Optimization. Memory allocation/deallocation could
be done at the beginning/end of each kernel, based on the data size computed
for the transfer. However, as the same array may be accessed in multiple kernels,
one can do better. Our method performs global analysis to summarize all accesses
of the shared array in the program and allocates/deallocates only once, saving
costs and improving re-use of the allocated memory. There is a small sacrifice
in precision, in terms of the memory size allocated, which however is always
conservatively larger. Such sacrifice does not affect the correctness of the program
and is outweighed by the saved costs of repeated allocation and possible re-
transfer of data.

The optimization is based upon global array dataflow analysis for pre-
cise array sections. The implementation also makes use of the advanced array
dataflow framework and symbolic analysis capabilities available in the Cetus
compiler infrastructure. The memory space requirement of an array A is
extracted from the union of LDEFA and LUSEA, where LUSEA represents
all read accesses and LDEFA represents all write accesses of an array A in the
program. LDEFA is the union of all LUSEA

Bri
and LDEFA is the union of all

LDEFA
Bri

in the program. Thus, LUSEA ∪ LDEF a represents all accesses of
array A in the program. The memory requirement for each dimension of the array
can be defined as [lbmin : ubmax] where lbmin ∈ (LUSEA ∪LDEFA) is the min-
imum lower bound of all accesses of array A and ubmax ∈ (LUSEA ∪ LDEFA)
is the maximum upper bound of all accesses of array A. [lbmin : ubmax] indicates
the bounds of any access to array A in the local process. Thus, it also defines
the memory allocation for array A. The size of the new array is different from
the original. The compiler must incorporate this change into all accesses of the
new array by subtracting lbmin from all indices. The size and offset information
is also utilized while generating the data transfers.

The analysis does not require array sections to be contiguous and can sup-
port arrays with any number of dimensions. In our current implementation, if
the analysis results in multiple array sections, the algorithm will conservatively
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merge them together. Further analysis can be done to determine whether the
sections should be merged or not, which we leave to future work.

4 Translation System Implementation

The HYDRA translation system consists of a compiler and a runtime system.
The compiler performs source-to-source translation to generate accelerated MPI
code from input HYDRA programs. Section 4.1 explains the compiler design
to support multiple accelerator architectures. Section 4.2 presents the overall
translation process of the HYDRA compiler. The HYDRA runtime system is
responsible for remote accelerator-to-accelerator communication in the compiler-
translated, accelerated MPI programs. The implementation of the runtime sys-
tem is described in Sect. 4.3.

Fig. 1. HYDRA compiler translation process: grey boxes represent the new passes in
the HYDRA compiler.

4.1 Supporting Multiple Accelerator Architectures

To support a wide-range of accelerator clusters, the compiler must be able to
target different accelerator architectures. This requirement poses a challenge to
the compiler design as different architectures have different features, some of
which are common while others are unique to the specific architecture.

In the HYDRA compiler, most compilation passes are architecture agnostic
with no specialization needed. The design defers specialization to as late as
possible in the translation process. In this way, only the last compilation pass of
code generation is architecture specific. The key to realizing such design is the
internal representation (IR).

From our observation the following four operations are sufficient to express any
accelerator program : (1) Memory Allocation, (2) Data Transfer, (3) Accelerator
Kernel Execution, and (4) Memory Deallocation. By using these operations as IR
constructs, the compiler can represent programs in an architecture-independent
form. To generate architecture-specific code, the compiler converts architecture-
independent constructs to their architecture-specific equivalents during the code
generation pass.
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4.2 HYDRA Translation Process

Figure 1 shows the overall translation process from the input HYDRA program
to the accelerated MPI program. Accelerator extensions are highlighted using
grey boxes. The dashed boxes represent existing CPU passes.

The compilation process starts with the CPU passes, which perform work par-
titioning and array dataflow analysis. The partitioned program is then passed to
HYDRA’s accelerator extension. The passes in the extension perform accelera-
tor kernel generation, memory transfer analysis, memory allocation optimization
and further architecture-independent optimization (e.g. hoisting memory trans-
fers, prefetching, etc.). After the accelerator code is added, the compiler ana-
lyzes and adds communication code to the program. The compilation process
completes with the code generation pass, which produces the accelerated MPI
program with accelerator kernels specific to the target architecture.

The current implementation of the HYDRA compiler supports two accel-
erator types: NVIDIA CUDA GPUs and Intel MIC. As target languages, we
choose CUDA for NVIDIA GPUs and OpenCL for Intel MICs. One might argue
that different architectures could be supported by using OpenCL as the target
language for all accelerator architectures; the compiler just needs to generate
OpenCL + MPI programs, allowing the generated code to run on any accelera-
tor cluster. However, OpenCL does not support accelerator-specific features, e.g.
using warp-level functions in CUDA. Thus, the translated code cannot fully uti-
lize the accelerator capabilities. Further, some architectures have limited support
for OpenCL features [6].

The HYDRA compiler faces similar limitations as the baseline OMPD sys-
tem: irregular programs are handled inefficiently for lack of compile-time infor-
mation about data accesses. Such accesses may lead to conservative memory
allocations and data transfers.

4.3 HYDRA Runtime System

The HYDRA runtime system is responsible for remote accelerator communica-
tion. In contrast to CPUs, accelerators cannot directly perform remote communi-
cation. The communication must be handled by the host CPU. Thus, additional
data transfer between host and accelerator memories is required before and after
the communication. We refer to such data transfer as message relay.

We designed a new runtime extension (ACC-RT), whose interaction with the
host-side runtime system (HOST-RT) enables remote accelerator communica-
tion. The HOST-RT system is responsible for generating communication mes-
sages and executing host-to-host communication, while the ACC-RT system is
responsible for managing host-accelerator data mapping and message relays. The
ACC-RT system uses communication information from the HOST-RT system to
generate message relays. The transfers are computed from the communication
messages generated by the HOST-RT system, and the mapping information pro-
vided by the HYDRA compiler. A runtime interface is designed for the compiler
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to provide mapping information between host and accelerator data. The map-
ping information includes the host address, accelerator address, accelerator data
size, and accelerator data offset. The accelerator offset is necessary in order to
align accelerator and host data. The overhead of the ACC-RT system is negli-
gible. In our experiments, we found this overhead to be less than 0.1 % of the
total execution time on 64-node accelerator clusters.

5 Evaluation

This section evaluates the effectiveness of the proposed techniques on two accel-
erator clusters, one with NVIDIA GPUs and another with Intel MICs.

5.1 Experimental Setup

We used the Keeneland cluster [20] to evaluate the GPU versions of the HYDRA
programs. Keeneland consists of 264 compute nodes, connected by an FDR
Infiniband network. Each node has two 8-core Xeon E5-2670 running at 2.6 Ghz,
32 GB of main memory, and three NVIDIA Tesla M2090 GPUs. Each GPU has
6 GB of device memory available for computation. We evaluated the MIC pro-
gram versions on a community cluster, where each node contains two 8-core Xeon
E5-2670 CPUs, 64 GB of main memory, and two Intel Xeon Phi P5110 accel-
erators. Each Xeon Phi has 6 GB of device memory available for computation.
The nodes are connected by an FDR-10 Infiniband network. Our evaluation uses
up to 64 nodes with one MPI process and one accelerator per node.

We present the results for five representative benchmarks: Bilateral Filter,
Blackscholes, Filterbank, Jacobi, and Heat3D. Bilateral Filter and Blackscholes
are from the NVIDIA CUDA SDK. The benchmarks are implemented in HYDRA
by converting their OpenMP counterparts. Bilateral Filter is a non-linear and
edge-preserving filter used for noise reduction and image recovery. It uses a
weighted average of intensity values from nearby pixels to update the intensity
value of each individual image pixel. Blackscholes is a financial formula to com-
pute the fair call and put prices for options. Filterbank is from StreamIt [19]
benchmark suite. The benchmark creates a filter bank to perform multi-rate
signal processing. Jacobi is a two-dimensional 5-point stencil computation that
solves Laplace equations using Jacobi iterations. Heat3D is a three-dimensional
7-point stencil computation that solves a heat equation. Both Jacobi and Heat3D
are common computations in scientific applications. These benchmarks represent
a class of applications and computations that perform well on single-accelerator
systems, and thus can be expected to take advantage of accelerator clusters.

5.2 Scalability

Strong Scaling. In the strong-scaling test, the problem size is kept fixed and
the number of processes is varied. We use two problem sizes for each bench-
mark: class-A and class-B. A class-A problem is small enough to fit the entire
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computation data in a single accelerator’s memory. A class-B problem requires
more than one accelerator to execute, since the memory requirement exceeds the
capacity of a single accelerator. Table 2 shows the setting of each problem class.

Table 2. Experimental setup for strong scaling

Benchmark class-A problem size class-B problem size Number of iterations

Jacobi 20000 × 20000 24000 × 24000 1000

Heat3D 768 × 768 × 768 800 × 800 × 800 1000

Blackscholes 67,000,000 options 400,000,000 options 1000

Bilateral filter 12280 × 12280 20000 × 20000 1

Filterbank 67,000,000 134,000,000 32

Figure 2 shows the results for both MIC and GPU clusters. HYDRA programs
with class-A problems achieve an average of 24.54x speedup on the 64-nodes MIC
cluster and 27.56x speedup on the GPU cluster. The maximum speedup is 45.18x
on the MIC cluster and 43.81x on the GPU cluster. The speedup is calculated
against a single accelerator execution time. We show the average speedup only
on class-A problems because they can correctly execute on a single node. For
class-B problems, the performance is compared against the performance of a
configuration with the smallest number of accelerators that allow the program to
be executed successfully. Our result shows that Jacobi, Heat3D, and Blackscholes
have good scalability on both MIC and GPU clusters.

Table 3. Experimental setup for weak scaling

Benchmark MIC problem size GPU problem size Number of iterations

Jacobi 8192 × 8192 8192 × 8192 100

Heat3D 512 × 512 × 512 450 × 450 × 450 100

Blackscholes 67,000,000 options 32,000,000 options 100

Bilateral filter 5500 × 5500 5500 × 5500 1

Filterbank 4,000,000 4,000,000 32

Bilateral Filter shows limited scalability on both MIC and GPU clusters. The
lack of coalesced memory accesses inside the accelerator kernel leads to inefficient
execution, limiting performance gained by node-level parallelism. With 64 nodes,
the speedup is 5.49x on MICs and 18.24x on GPUs. More advanced compiler
analysis may enable coalesced memory accesses, thus improving the scalability
of the generated program. Filterbank also exhibits scalability limitation on both
MIC and GPU clusters. In contrast to Bilateral Filter, the cause of the limitation
is the conservative methods of the array data flow analysis. The analysis sum-
marizes memory accesses by all paths of conditional branches inside the parallel
loops, resulting in extra broadcast communications.
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MIC STRONG SCALING

(a) Jacobi (b) Heat3D (c) Blackscholes (d) Bilateral Filter (e) Filterbank

GPU STRONG SCALING

(f) Jacobi (g) Heat3D (h) Blackscholes (i) Bilateral Filter (j) Filterbank

Fig. 2. Strong scaling experimental results of five benchmarks on MIC cluster(a–e)
and GPU cluster (f–j). The speedup of the class-A problem is relative to a single-
node performance. The speedup of class-B problem is relative to the performance of a
configuration with the smallest number of accelerators that allow the program to be
executed successfully.

On the MIC cluster, Blackscholes with class-B problem size shows super-
linear speedup when the number of nodes increases from 4 to 8. The reason
lies in the data transfers inside the iteration loop. The transfer on 4 nodes is
22.14x slower than on 8 nodes due to a MIC driver issue. This difference in data
transfer time contributes to the super-linear speedup. This transfer could have
been hoisted out of the iteration loop, however, automatic compiler hoisting
did not take place in this case due to implementation limitations. We tried
hoisting this transfer out of the loop manually, and observed that the achieved
performance showed linear scaling, as in the class-A problem.

Weak Scaling. In the weak scaling test, the problem size is increased as the
number of processes increases. The problem size per process is fixed. Table 3
shows the problem sizes per compute node used in the weak-scaling experiment
on the GPU and MIC clusters. We performed this experiment using up to 32
accelerators. Figure 3 shows the weak-scaling results of both MIC and GPU
clusters. The speedup is calculated over the execution time of a single node with
one accelerator.

Jacobi, Heat3D, Bilateral Filter, and Blackscholes achieve high scalability in
the weak scaling test. Filterbank performs the worst in terms of scalability due to
excessive broadcast communication caused by the conservative array data flow
analysis. Note that the achieved scalability is better on the MIC cluster than
on the GPU one. This is because, on average, the accelerator execution time is
greater on MICs than that for GPUs. Therefore, the communication overhead
has a bigger impact on the scalability in the GPU cluster.
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(a) Weak scaling-MIC (b) Weak scaling-GPU

Fig. 3. Weak scaling results of five benchmarks on MIC cluster(a) and GPU cluster(b).
The speedup shown is against the execution of a single-accelerator single-node setup.

5.3 Memory Allocation

In this experiment, we show only weak-scaling results on the MIC cluster.
The other tests exhibited similar trends. Figure 4 shows the memory allocation
requirement for each benchmark in the weak scaling experiment on the MIC
cluster. Each chart shows the total amount of memory required by the entire
problem and the amount of memory actually allocated on the accelerator for
each benchmark. For all benchmarks, except Filterbank, the size of allocated
memory on the accelerator memory is fixed as the number of nodes increases.
The dotted line indicates the single accelerator memory limitation. It shows the
scaling limit if the memory allocation optimization is not implemented. With-
out memory allocation optimization, Jacobi cannot exploit more than 8 nodes,
while Heat3D, Blackscholes, and Bilateral Filter benchmarks cannot run beyond
4 nodes.

Unlike other benchmarks, the accelerator memories allocated by each process
are different for Filterbank. We report the minimum memory (required by
process 0) and the maximum memory (required by process N-1) in Fig. 4e. For
process 0, the accelerator memory requirement remains the same for any prob-
lem size. For other processes (1 to N-1), however, the memory requirement grows
with the problem size. This behavior is explained by the conservative array data
flow analysis employed by HYDRA that results in over-allocation in the presence
of conditional branches.

6 Related Work

Programming Models for Accelerator Clusters. Several previous efforts
proposed programming models for accelerator clusters. OmpSs [2,3] considers
a directive-based shared address programming model. This model requires the
users to provide extra information to the compiler about computation offload-
ing and data transfers. Programmers use data region to specify accessed regions
of shared data; the underlying runtime system then manages the allocations
and transfers of these regions. Several other approaches [13,16] extend a PGAS
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(a) Jacobi (b) Heat3D (c) Blackscholes

(d) Bilateral Filter (e) Filterbank

Fig. 4. Accelerator memory allocation in weak-scaling experiments on MIC cluster.

(Partitioned Global Address Space) language to support GPU clusters. PGAS
languages require programmers to specify thread and data affinity explicitly.
In contrast to this work, the HYDRA compiler derives the required information
automatically from HYDRA programs, which are easier to write than PGAS pro-
grams. SnuCL [9] extends an OpenCL framework to run on CPU/GPU clusters.
The SnuCL runtime system provides a single machine image, which allows single-
node OpenCL programs to run on the cluster. In contrast to our work, SnuCL
programmers still face the programming complexity of accelerator programming.
Moreover, as we discussed earlier, OpenCL is not fully portable. Programmers
need to customize OpenCL programs for each architecture to fully utilize CPUs
and accelerators.

Memory Management and Communication. Memory management and
communication are innate to any shared address programming model. Several
previous efforts proposed shared address programming models for CPU clusters.
There are two major approaches for memory allocation management in these
contributions. The first approach is to rely on the underlying operating system
or runtime system. For example, in OMPD [10], each process allocates the entire
shared data in every process and lets the virtual memory system allocate the
required physical memory when the data is accessed. This solution is not feasible
on accelerators because of the lack of virtual address space on GPUs and the
lack of swap space on MICs. Another example is Software Distributed Shared
Memory (SDSM) [7]. The SDSM runtime system provides a shared address
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abstraction of the distributed system. The performance of this approach has
remained far below that of MPI programming. Another approach relies on infor-
mation provided by the programmers. In High Performance Fortran (HPF) [18],
programmers explicitly provide data partitioning information through directives.
In PGAS languages, such as UPC [5], Co-array Fortran [15], and Titanium [21],
the programmers explicitly specify the affinity between processes and data. In
contrast to these systems, HYDRA neither requires additional directives nor
relies on the operating system. On the GPU side, another approach [17] pro-
posed a hybrid compiler-runtime analysis, based upon the polyhedral model,
to automate data allocation on multi-GPU machines. In contrast to this work,
HYDRA uses symbolic analysis to perform compile-time memory allocation and
transfer analyses targeting accelerator clusters and provides a complete transla-
tion system for multiple accelerator types. NVIDIA introduced Unified Memory
Access to simplify memory management on GPUs; however, this system incurs
high overhead [12].

7 Conclusion

We have introduced compile-time and runtime techniques for extending shared
address programs for execution on accelerator clusters of multiple types.

The paper presented two novel, architecture-agnostic compile-time analyses,
which ensure scalability of the translated program. We also presented a runtime
system to support accelerator communication. To show the effectiveness of these
analyses, we developed a source-to-source translation system that generated an
accelerated MPI program from a simple shared address programming model called
HYDRA. To support the architecture-agnostic nature of the proposed technique,
a compiler design was presented. We demonstrate this design for two common
accelerators: NVIDIA GPUs and Intel Xeon Phi. With the proposed techniques,
we showed that the simple form of shared address programming can be extended
to accelerator clusters without additional involvement of programmers.

HYDRA can achieve an average speedup of 24.54x against a single-accelerator
performance when running on a 64-node cluster with Intel Xeon Phis and a
27.56x speedup when running on 64 nodes with NVIDIA GPUs. We also showed
that our single-node performance is comparable to, or better than, a state-of-the-
art OpenMP-to-CUDA translation system. There are additional opportunities
for performance enhancements in our system for both computation and commu-
nication. Ongoing work is exploring these opportunities.
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Abstract. Legacy MPI applications are an important and economically
valuable category of parallel software that rely on the MPI-1, MPI-2
(and, more recently, MPI-3) standards to achieve performance and porta-
bility. Many of these applications have been developed or ported to MPI
over the past two decades, with the implicit (dual) goal of achieving
acceptably high performance and scalability, and a high level of porta-
bility between diverse parallel architectures. However they were often
created implicitly using MPI in ways that exploited how a particular
underlying MPI behaved at the time (such as those with polling progress
and poor implementation of some operations). Thus, they did not nec-
essarily take advantage of the full potential for describing latent concur-
rency or for loosening the coupling of the application thread from the
message scheduling and transfer.

This paper presents a first transformation tool, Petal, that identi-
fies calls to legacy MPI primitives. Petal is implemented on top of the
ROSE source-to-source infrastructure and automates the analysis and
transformation of existing codes to utilize non-blocking MPI and persis-
tent MPI primitives. We use control flow and pointer alias analysis to
overlap communication and computation. The transformed code is capa-
ble of supporting better application bypass, yielding better overlapping
of communication, computation, and I/O. We present the design of the
tool and its evaluation on available benchmarks.

1 Introduction

The Message Passing Interface (MPI) describes a library that enables the devel-
opment of portable parallel software for large-scale systems. The first MPI stan-
dard [12] focused on providing a basic framework for point-to-point and col-
lective communication. MPI-2 [8] introduced one-sided communication, added
support for parallel file access, and dynamic process management, and extended
the usefulness of two-group (inter-communicator) operations. MPI offers a small
set of core functions that are sufficient for the development of many applica-
tions, and also offers functionality that helps experts optimize applications [10].
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MPI bindings exist for C++, Fortran, and many other languages, making MPI
one of the most prevalent programming models for high-performance computing.
MPI is supported on many platforms, which makes applications developed with
MPI portable to many large-scale systems. Building high-performance comput-
ing systems constitutes a large investment in human resources. As the commu-
nication infrastructure advances and the MPI standards and library implemen-
tations follow suite, legacy codes becomes a potential liability. Code that does
not utilize more recent MPI primitives will not scale well on newer architectures.
This effect will become more marked over time.

With Exascale systems on the horizon, the cost of communication is becom-
ing a major concern. Compared to older architectures, communication incurs
relatively more overhead. Legacy software written for older architectures often
utilizes MPI Send and MPI Recv for the communication of point-to-point messages.
These two primitives block until the data exchange completes (or at least till
the send buffer can be reused by the calling thread). While this makes it easy
for programmers to reason about communication, such methods fail to utilize
computing resources efficiently. On next generation hardware, the implied cost
of sending data using a polling and/or blocking mode of communication signif-
icantly rises and it is expected that software relying on blocking communica-
tion will have too much overhead. In order to take advantage of the architec-
tural changes in Exascale, existing code needs to be transformed to use better
primitives, some of which are only available in MPI-3 or higher. Non-blocking
primitives allow overlap of communication with local computation1. A paired,
non-blocking communication uses two MPI routines, one to start (MPI Isend,
MPI Irecv) and one to complete (MPI wait). After a communication has been ini-
tiated, code can compute, and only waits at the MPI wait to synchronize with
the communication operation. In addition to the benefits of non-blocking, appli-
cations that exhibit fixed point-to-point communication patterns can further
utilize persistent operations introduced in MPI-1 and being extended in MPI-
3.x. Persistent MPI primitives reduce communication overhead in applications
that exhibit fixed patterns. Persistent MPI operations minimize the overhead
incurred from redundant message setup.

Rewriting legacy MPI programs by hand is both tedious and error prone. To
relieve programmers of the task of manually rewriting applications, the authors
have developed tool support to replace uses of MPI primitives that are known to
perform slowly on modern hardware (or may have better alternatives, especially
on next-generation architectures) with better alternatives in the MPI standard.
We have implemented a source code rejuvenation tool [16] called Petal using
the ROSE source-to-source infrastructure [3,17]. We chose ROSE for its sup-
port of many languages relevant for high-performance computing. Petal ana-
lyzes existing source code and finds calls to MPI Send and MPI Recv. It replaces
these primitives with their non-blocking counterparts and uses data-dependency

1 Provided the underlying MPI does not poll excessively to make progress or for mes-
sage completion, the messages are long enough, and there is sufficient memory band-
width for both communication and computation.
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and control-flow information to find code locations where corresponding calls to
MPI Wait need to be inserted. If Petal can determine that the communication
partners, message buffer, and message length do not change, persistent commu-
nication primitives will be used in lieu of non-persistent functions.

Overall, this paper offers the following contributions:

– program analysis and transformation to replace blocking MPI calls with non-
blocking calls;

– program analysis and transformation to introduce persistent MPI calls; and,
– analysis of persistent MPI implementations.

The remainder of this paper is organized as follows. Section 2 presents more
detailed information on MPI and ROSE. Section 3 describes our implementations
and Sect. 4 discusses our evaluation and findings. Section 5 gives an overview
of related work on MPI transformations, and Sect. 6 offers conclusions and an
outlook on possible future work.

2 Background

This section provides background information on MPI and the ROSE compiler
infrastructure.

2.1 MPI Primitives

MPI offers several modes of operation for point-to-point communication. Many
programs employ MPI Send and MPI Recv, two blocking MPI primitives. MPI Send

takes the following arguments: base pointer to message data, the number of
elements to send, a type descriptor, the destination, and a communicator. The
base pointer to data typically points to a send buffer, but it could also point
to data described by a type descriptor. Blocking means that the MPI primitive
waits until the message buffer containing the data being sent/received is safe to
be used again by the calling process. Only then is control returned to the caller.
On send, actual implementations of MPI Send may either block until all data has
been transmitted or copy the data to an intermediate internal buffer. The use of
blocking primitives may be prone to deadlocks, if programmers do not carefully
consider send and receive order [13]

MPI Isend and MPI Irecv are non-blocking versions for point-to-point message
communication. Compared to MPI Send’s arguments, MPI Isend adds an addi-
tional argument for a request handle. The handle is used in calls to MPI Wait

to identify which send to wait for. Non-blocking calls return immediately after
initiating the communication and the user thread can execute more operations,
eventually followed by a completion operation (a wait or test) on the request.
The communication is considered complete after a successful call to MPI Wait (or
MPI Test, etc.). Non-blocking is used to help promote overlap communication
and computation, resulting in communicating cost hiding and yielding overall
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better performance on systems that support it. To avoid tampering with the
data, programmers must ensure that the message data is not modified before
the communication is completed.

Another mode is offered by persistent communication primitives. If a program
exhibits regular communication patterns (static arguments), where the same
communication partners exchange fixed size messages, utilization of persistent
MPI enables exploitation of faster communication paths. Provided MPI imple-
mentations efficiently implement these operations, persistence supports reduced
overhead by eliminating cost associated with repeated operations and stream-
lined processing of derived datatypes. Persistence also can reduce jitter and allow
for preplanned choice of algorithms, such as for MPI collectives. Since persistence
in MPI offers many benefits (potential and long observed), it is likely that future
MPI standards will enhance support for persistent primitives, for example by
supporting variable length messages between the same communication partners.

Note that all three modes can be used interchangeably. It is possible that
one side uses persistent MPI, while the other side does not. That is why the
functions are sometimes referred to as providing half-channels.

Figure 1 shows the use of blocking, non-blocking, and persistent operations
for a simple 1D heat transfer code. The basic design of the heat-transfer code
is depicted in Fig. 1d. The code uses two arrays, containing cells with temper-
ature information. The initial temperatures are located in the even array. In
odd numbered timesteps the odd array is computed from the even array and
in even numbered timesteps vice versa. Red cells are computed by neighbors
and dark blue cells are needed by neighbors for the next iteration. Figure 1a
shows a blocking implementation. The order of sends and receives is impor-
tant to avoid deadlock. Even-numbered MPI processes send first, odd numbered
processes receive first. D stands for MPI DOUBLE, and n is the rank of this node.
For simplicity, the codes assume that each process has two neighbors and ignores
send and receive status. Figure 1b demonstrates the overlap of communication
and computation in non-blocking mode. The key idea is that the inner (light
blue) cells can be computed before the data from neighbors are received. The
code starts two receive operations to receive both neighbor’s data from the last
iteration. Then it starts two send operations to communicate its values from
the previous iteration to its neighbors. While the communication is ongoing,
the inner cells are computed. Before cells depending on neighbors’ data can be
computed, the code waits until the data have been received (Line 10). After
computing the outer cells, the wait in Line 13 blocks until the data have been
sent. This is necessary in order not to overwrite the data in the next iteration.
Figure 1c shows the persistent version of the code. Since the communication pat-
terns, buffer, and buffer size do not change, we can set up the communication
for sends and receives at the beginning of the program, and reuse this pattern
in every iteration.
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1 double b[4]; // send/receive buffer

3 for (int i = 0; i<MAX; ++i) {
data to buf(prev, b+2);

5 if (n%2 == 0) {
7 MPI Recv(b+0, 1, D, n−1, 0, com);

MPI Recv(b+1, 1, D, n+1, 0, com);
9 }

MPI Send(b+2, 1, D, n−1, 0, com);
11 MPI Send(b+3, 1, D, n+1, 0, com);

if (n%2 == 1) {
13 MPI Recv(b+0, 1, D, n−1, 0, com);

MPI Recv(b+1, 1, D, n+1, 0, com);
15 }
17 buf to data(b, prev);

compute all(prev, curr);
19 swap(curr, prev);

}

(a) Blocking operations

MPI request r[4]; // request handler
2 double b[4]; // send/receive buffer

4 for (int i = 0; i<MAX; ++i) {
data to buf(prev, b+2);

6 MPI Irecv(b+0, 1, D, n−1, 0, com, r+0);
MPI Irecv(b+1, 1, D, n+1, 0, com, r+1);

8 MPI Isend(b+2, 1, D, n−1, 0, com, r+2);
MPI Isend(b+3, 1, D, n+1, 0, com, r+3);

10 compute inner(prev, curr);
MPI Wait(2, req+0, IGNORE);

12 buf to data(b, prev);
compute outer(prev, curr);

14 MPI Wait(2, req+2, IGNORE);
swap(curr, prev);

16 }

(b) Non-blocking operations

MPI request r[4]; // request handler
2 double b[4]; // send/receive buffer

4 MPI Recv init(b+0, 1, D, n−1, 0, com, r+0);
MPI Recv init(b+1, 1, D, n+1, 0, com, r+1);

6 MPI Send init(b+2, 1, D, n−1, 0, com, r+2);
MPI Send init(b+3, 1, D, n+1, 0, com, r+3);

8 for (int i = 0; i<MAX; ++i) {
data to buf(prev, b+2);

10 for (int j = 0; j < 4; ++j)
MPI Start(r+j);

12 compute inner(prev, curr);
14 MPI Wait(2, r+0, IGNORE);

buf to data(b, prev);
16 compute outer(prev, curr);

MPI Wait(2, r+2, IGNORE);
18 swap(curr, prev);

}

(c) Persistent operations

(d) Design Overview

Fig. 1. 1D heat transfer

2.2 The ROSE Compiler Infrastructure

The ROSE source-to-source translation infrastructure is under active develop-
ment currently at the Lawrence Livermore National Laboratory (LLNL). ROSE
provides front ends for many languages, including C/C++, Fortran 77/95/2003,
Java, and UPC. ROSE also supports several parallel extensions, such as OpenMP
and CUDA. ROSE generates an Abstract Syntax Tree (AST) for the source code.
The ASTs are uniformly built for all input languages. ROSE offers many specific
analyses (e.g., pointer alias analysis) and makes these available through an API.
Users can write their own analyses by utilizing frameworks that ROSE provides.
These include attribute evaluation traversals, call graph analysis, control flow
graphs, class hierarchies, SSA representation, and dataflow analysis. The Fuse
framework [4], is an object-oriented dataflow analysis framework that affords
users with the ability to create their own inter- and intra-procedural dataflow
analyses by implementing standard dataflow components. ROSE has been used
for building custom tools for static analysis, program optimization, arbitrary
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program transformation, domain-specific optimizations, performance analysis,
and cyber-security. With the representation of the code as an AST and using
the static analysis provided from the ROSE libraries, one can explore the code
and determine how to improve it by looking for certain code style, inserting new
code, changing and/or removing old code, hence generating modified source code
while preserving the semantics of the original code.

3 Implementation

In this section, we describe Petal’s implementation of a mechanism to trans-
form applications from using blocking MPI point-to-point routines to using non-
blocking versions. We also describe the analysis and transformations to introduce
persistent routines.

3.1 Design

Petal transforms code to use non-blocking MPI operations to reveal a better
potential overlap of computation and communication and adds persistent oper-
ations, whenever possible, to eliminate much of the overhead of repeatedly com-
municating with a partner node.

Figure 2 shows an overview of our transformation framework. The tool takes
MPI source files, for which ROSE compiles and generates the Abstract Syntax
Tree (AST), then function calls are inlined if the function implementation should
be available. Once inlined, ROSE’s query and builder libraries are used to find
and replace blocking with non-blocking calls and to identify where to insert
corresponding calls to MPI Wait. If some or all of these non-blocking calls are
used repeatedly with the same arguments, they are replaced with persistent
communication operations. At the end, Petal generates a new transformed source
file as its output, using either non-blocking or persistent communications (which
are always non-blocking).

The idea of following this approach is based on trying to maximize the overlap
between communication and computation without compromising the semantics
of the original application. Inlining eliminates the need to use inter-procedural
analysis and simplifies moving MPI Wait downward, crossing its original function
boundaries if no unsafe access to the message buffer is found across the function
calls. MPI uses pointers to the message buffers that they use in their communi-
cation. This fact allowed us to simplify the analysis used by the tool and focus
only on using pointer alias analysis. ROSE’s pointer alias analysis implements
Steensgaard’s algorithm, which has linear time complexity [19]. This allows our
tool to scale well with large applications.

3.2 Blocking to Non-blocking Transformation

Petal allows changing the blocking function call MPI Send/MPI Recv to the cor-
responding MPI Isend/MPI Irecv while ensuring proper access to the message
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Input:Source files MPI+C/C++

Inline function calls

Find and replace all MPI Send/

MPI Recv with MPI Isend/MPI Irecv

Find MPI Wait position

Is there
a loop

surrounding
MPI Isend/

MPI Irecv

calls?

Check for consistent arguments
Add persistent communication

Output: source file
with persistent communication

Output: source file
with non-blocking calls

Interprocedural Pointer Analysis
ROSE

No

Yes

Fig. 2. Transformation framework

buffers, and once an operation that access the message buffer is encountered,
MPI Wait is inserted before it to ensure the safety of the data.

Calling MPI Send/MPI Recv is in effect the same as calling MPI Isend/MPI Irecv

immediately followed by MPI Wait. Our tool moves calls to MPI Wait downward
along forward control flow edges as long as the operations are safe with respect
to the MPI operation and buffer access. Any write to a message buffer that is
used in a send operation, and any access to a message buffer that is used in
a receive operation is considered an unsafe access and MPI Wait must be called
before that to maintain the correctness of the code.

For each blocking call, to be replaced by the corresponding non-blocking, three
variables are created, two of which are handlers for MPI Request and MPI Status

plus a flag introduced to ensure the execution of MPI Wait if and only if its corre-
sponding non-blocking call is executed. Each blocking call is replaced with the
corresponding MPI Isend/MPI Irecv. After finding and replacing blocking calls,
control flow analysis is used to find subsequent statements, extract the variables
used in these statements and use pointer analysis to test for aliasing between the
message buffer used and the variables in hand. For the send operation, we iden-
tify potential update operations, such as a variable occurring on the left hand side
of an assignment. We use pointer alias analysis to check whether an update could
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modify some data. For the receive operation, all expressions that read values from
a variable are tested. Variable extraction includes subscripts of an array, argu-
ments in non-inlined function calls, variables used in conditions of control state-
ments, initial and increment statements of for loop, and operands of binary and
unary operations. Our tool uses ROSE’s pointer alias analysis to test whether the
extracted variables and the communication buffer could alias. If there could be an
alias, the tool inserts the corresponding MPI Wait before the statement using this
variable.

Because of inlining, Petal is able to bypass the end of the function and keep
searching for potential usage of the message buffer outside the function contain-
ing the original MPI calls. If no alias is found in all the statements following
the block call, the tool identifies where this statement is located. If it is in
main(), that means that no alias is found and the MPI Wait is inserted before the
MPI Finalize. Because of the complexity of loop-carried data dependencies, cur-
rently the tool does not support moving MPI Wait outside the loop body. Hence,
if it is in a loop statement (for, while, do-while) MPI Wait is inserted as the last
statement in the loop. Otherwise the statement following the block that has the
blocking call is examined for alias analysis. To ensure that the MPI Wait in its new
position gets executed only if its corresponding non-blocking call is executed, a
flag is set to true with each non-blocking call and then based on its value, the
corresponding MPI Wait is executed.

Figure 3 shows an example of a snippet of code before and after transfor-
mation. Figure 3a shows the original blocking code and Fig. 3b shows how the
code looks after the transformation. Lines 3–5 shows the declaration of the
MPI Request. MPI Status and the flag variables. Line 10 sets the flag to 1 where
Line 21 tests for the flag’s value before executing the MPI Wait on Line 22. Since
this is a send call, the printf function call is a safe read access and the wait call
is inserted after it.

3.3 Non-persistent to Persistent Transformation

If a program exhibits regular communication patterns, where the same com-
munication partners exchange fixed size messages, utilization of persistent MPI
enables exploitation of faster communication paths2. In Shao et al. [18] work to
identify communication patterns for MPI programs, they discovered that many
programs that are considered dynamic can use persistent communication. This
means that changing these programs to use persistence will result in better per-
formance. The difficulty of persistent communications is that possible uses in real
world codes are hard to determine statically. To overcome this limitation, we use
dynamic analysis. Petal transforms code to persistent mode and inserts guards
that test that the arguments did not change. Persistent communication is a four-
step process. First, a persistent request is created. Then, data transmission is
initiated. After that, wait routines must be called to ensure proper completion.
Lastly, the persistent request handlers must be explicitly deallocated.

2 At least on high quality implementations of MPI.
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1 int ∗buffer;
int x;

3 ... //code for main,initialization,...
5 for(int i=0;i<1000;i++)
7 {
9 if (myid == source) {

∗buffer = 123;
11 MPI Send(buffer,count,MPI INT,

dest,tag,MPI COMM WORLD);
13 x = 0;

}
15 else {
17 ∗buffer = 456;

x = 1;
19 }
21 printf(”%d\n”,∗buffer);

}

(a) Before

int ∗buffer;
2 int x;

MPI Request reqs[1];
4 MPI Status stats[1];

int flags[1];
6 ... //code for main,initialization,...

for(int i=0;i<1000;i++)
8 {

if (myid == source) {
10 flags[0]=1;

∗buffer = 123;
12 MPI Isend(buffer,count,MPI INT,

dest,tag,MPI COMM WORLD,&reqs[0]);
14 x = 0;

}
16 else {

∗buffer = 456;
18 x = 1;

}
20 printf(”%d\n”,∗buffer);

if (flags[0] == 1)
22 MPI Wait(&reqs[0],&stats[0]);

}

(b) After

Fig. 3. Non-blocking transformation example

Changing to persistent mode is best suited for non-blocking calls in a loop.
Petal does such transformations from non-blocking non-persistent to persistent
automatically. A structure is created to hold initial values for non-blocking call
arguments as its members. Using ROSE queries, the tool identifies MPI Isend/

MPI Irecv and checks to see which one is enclosed in a loop. If no call is in
a loop, no transformations are performed. If one or more are found inside a
loop, the tool initiates a persistent request with the same arguments as the
corresponding non-blocking call and places this initiation process before the loop
(MPI Send/Recv Init). In addition, it stores the values of the MPI Isend/MPI Irecv

arguments in a struct variable for comparing the values across iterations. Then
inside the loop, it inserts an if statement to check if the current values are the
same as the persistent request argument values, if the outcome is yes, it uses
this persistent request using MPI Start(&request), otherwise it uses the normal
MPI Isend/MPI Irecv call. After the loop, all the created persistent requests are
freed.

Following the output from Figs. 3b and 4 shows the result of applying the
persistence transformation. On the left side, line 6 shows the persistent request
handler and line 7–16 shows the struct definition and its instance declaration.
Line 20 initiates the persistent communication passing it all the non-blocking
arguments and lines 23–29 represents the copying of the arguments values to the
struct instance. On the right side, line 6–11 represents the test against the current
values with the values stored in the persistent request. If they are the same
MPI Start on line 13 is executed, otherwise the original MPI Isend is executed on
line 16–17. Line 29 shows the deallocation of the persistent request.
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1 int ∗buffer;
int x;

3 MPI Request reqs[1];
MPI Status stats[1];

5 int flags[1];
MPI Request preqs[1];

7 struct buf data
{

9 void ∗buf;
int count;

11 MPI Datatype datatype;
int dest;

13 int tag;
MPI Comm comm;

15 }
struct buf data temp data[1];

17 ... //code for main,initialization,...
19 MPI Send init(buffer,count,MPI INT,
21 dest,tag,MPI COMM WORLD,&preqs[0]);

23 temp data[0] . buf = buffer;
temp data[0] . count = count;

25 temp data[0] . datatype = MPI INT;
temp data[0] . dest = dest;

27 temp data[0] . tag = tag;
temp data[0] . comm =

29 MPI COMM WORLD;

(a) Persistent

1 for(int i=0;i<1000;i++)
{

3 if (myid == source) {
flags[0]=1;

5 ∗buffer = 123;
if (temp data[0] . buf == buffer

7 && temp data[0] . count == count
&& temp data[0] . datatype == MPI INT

9 && temp data[0] . dest == dest
&& temp data[0] . tag == tag

11 && temp data[0] . comm == MPI COMM WORLD
{

13 MPI Start(&preqs[0]);
}

15 else {
MPI Isend(buffer,count,MPI INT,

17 dest,tag,MPI COMM WORLD,&reqs[0]);
}

19 x = 0;
}

21 else {
∗buffer = 456;

23 x = 1;
}

25 printf(”%d\n”,∗buffer);
if (flags[0] == 1)

27 MPI Wait(&reqs[0],&stats[0]);
}

29 MPI Request free(&preqs[0]);

(b) contd

Fig. 4. Persistent transformation example

3.4 Discussion

Even though the tool can detect any unsafe access to the message buffers cor-
rectly, the applied analysis has limitations in two cases. First, it treats any access
to a part of the array as an access to the whole array. For example if MPI sends
the first 10 elements of a 100-element array, an assignment to the 20th element
will be considered unsafe even though it is in a different place and can be safely
used. The second case is that Steensgaard algorithm treats a struct member
access as an access to the whole struct [19]. These two cases might lead to plac-
ing the MPI Wait in overly conservative positions in some applications. We plan
to improve our tool to handles these cases better, since identifying these cases
could result into achieving better communication-computation overlap.

Currently, Petal cannot combine multiple consecutive calls to MPI Wait, if
found together, into a single MPI Waitall call. This is because different calls to
MPI Isend/MPI Irecv may originate in alternative blocks. For example, two calls
are part of the then and else branch of an if statement. We hope to find a better
solution instead of using flags and if-statement, to ensure the semantics of the
code and being able to take advantage of using MPI Waitall.

4 Evaluation

In this section, we present the preliminary evaluation of using Petal and the effect
of its transformations on overall application performance. The experiments were
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performed on the TACC Stampede system. Stampede is a 10 Petaflop (PF) Dell
Linux Cluster with 6400+ Dell PowerEdge server nodes each with 32 GB mem-
ory, 2 Intel Xeon E5 (8-core Sandy Bridge) processors and an additional Intel
Xeon Phi Coprocessor (61-core Knights Corner) (MIC Architecture) [20]. We
used the mvapich2 MPI library. Petal was tested with the 1D heat decomposi-
tion described earlier, 2D heat [7] and DT from the NAS NPB 3.3 benchmark [1].

We tested the performance of the application while varying the number of
MPI processes. For 1D heat, we varied the number of MPI processes in each
case ranging from 6 to 200 tasks. For 2D heat and DT with classes W and A,
the number of MPI processors varied between 16 and 256. Figure 5 shows the
execution time speedup (S = Toriginal/Ttransformed) after applying non-blocking
transformation, and adding persistent communication. Figure 5a shows the effect
when running applications with only 16 MPI processes, while Fig. 5b shows the
effect on applications with 200 and more processes. As shown in the figures,
we experienced good improvement with larger number of processes while flat
to minor slowdown was observed with fewer numbers of processes. However, in
both cases we experienced minor slowdown when adding persistence3.

4.1 Discussion of Results

Petal was able successfully to transform applications from blocking to non-
blocking while pushing MPI Wait as far as possible, while also preserving the
correctness of the code output. The results shows that with smaller programs
and few tasks, the non-blocking improvement is negligible and sometimes hurts
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Fig. 5. Execution time speedup

3 This indicates that mvapich may not optimize the code path for persistent send
and/or receive.
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the application performance. However, with increasing problem size and number
of MPI tasks, non-blocking enhanced the performance by up to 30 %.

Unfortunately, even though Petal was able to transform code to persistent
mode, the results of persistent performance showed a flat improvement and some-
times a slowdown.

To gain more insight into the usage of persistent communications, we
applied the persistent transformation on the LULESH code from LLNL [11] on
Stampede and on a Debian 7.6 amd64 computer with 1 Xeon E5410 @ 2.33 GHz
using the Open MPI 1.6.5 library. LULESH already exploits non-blocking opera-
tions. Since it has some communications that are fixed for most of the program’s
execution time, persistent communication should be beneficial. However, upon
transforming to persistent no gain was seen and with increasing number of tasks
we saw a minor slowdown. Since Open MPI is open source, we investigated how
it implements its non-blocking and persistent communications. We found that
they optimize the code by creating persistent requests and using them whenever
possible. Hence, changing the applications’ code to persistent will not give a
speedup as Open MPI already uses similar optimization techniques internally.
The slowdown might be because of the overhead of checking the arguments on
each iteration.

According to the MPI Forum [2], persistent requests are considered to be
half-channels, which makes the connection faster by reducing the overhead of
communication processing within each of the sender and receiver. Our results
suggest that the performance improvement is dependent not only on the stan-
dard definition of how code should work but it also depends on the actual MPI
implementation and architecture. While the tested systems did not show any per-
formance improvements, the transformation may be beneficial on other systems.

5 Related Work

The idea of overlapping communication and computation code is of interest to
many researchers because of the promising results in better performance it can
give when applied efficiently. In this section, we describe previous research work
done to produce overlapped communication and computation in MPI.

Several methods were studied and implemented to handle the communication
computation overlap approach. Das et al. [6] represents the closest work to our
tool in which they developed an algorithm for pushing wait downward in a seg-
ment of code. However, they use Static Single Assignment (SSA) use-def analysis
to determine the statements that access the message buffer. Even though they
describe a method for moving a MPI Wait out of its current scope interval possi-
bility of going to the parent, they did not implement their method and currently
their compiler tool only detects MPI calls and finds MPI Wait’s final position;
however, insertion is done by hand. Haque et al. [9] developed a similar tool for
transforming blocking to non-blocking; however, it does not use any compiler
analysis techniques and relies heavily on the programmer annotation to identify
where to move the corresponding non-blocking call and its corresponding wait.
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Another work is presented by Nguyen et al. in [14] in which they developed
Bamboo, a transformation system that transforms MPI C code into a data-driven
application that overlaps computation and communication. It was implemented
with the ROSE compiler framework and runtime support using the Tarragon
runtime library. Their approach is to determine task precedence. It relies on
programmer annotations to mark parallel loops and data packing/unpacking
plus calls to communication routines. Other approaches were developed using
different techniques to achieve the same goal of maximizing communication and
computation overlap. Danalis et al. developed the ASPhALT tool [5] within
Open64. Their idea is based on automatically detecting where data is available
and applying the pre-pushing transformation to send data as soon as possible.
They focused on specific a type of applications that does its communication in
two parts where at first, it computes the data in a loop with minimum depen-
dencies across iterations, and then uses communication call(s) after the loop to
exchange the data generated by the loop. Pellegrini et al. [15] offer a different
approach in which they use the polyhedral model to determine exact dependen-
cies and automatically detect potential overlap on a finer grain. To simplify the
analysis, they normalize the code by changing non-blocking to blocking. Their
work is limited by polyhedral model requirements of using only affine expressions.

Even though MPI included persistent communication since MPI-1 and these
calls emphasize the benefits of using persistent, to our knowledge, no available
work offers a tool that automatically transforms non-persistent to persistent
communication, when such patterns can be identified.

6 Conclusions and Future Work

In this paper, we described our development of Petal, a tool that supports trans-
forming a blocking MPI code to non-blocking version and introduces persistent
communication if possible. We have described the approach used in order to
push MPI Wait as far as possible from the corresponding communication call in
order to improve the potential for overlap of communication and computation
code and also to use persistent communication whenever two points communi-
cate the same type and amount of data over multiple iterations. Petal is based
on the ROSE framework and uses ROSE’s alias analysis to apply transformation
required and to preserve correctness of the code. Preliminary results showed that
we can improve performance by using non-blocking. In some cases we found that
persistent communication does not improve performance even with code that is
proved to have fixed communication for most of the execution time. It does not
only depend on having fixed arguments but the MPI library used has an effect
too. Further detailed analyses of persistent performance on different architec-
tures with different libraries will be explored.

In addition to analyzing data dependency within loop iterations and moving
MPI Wait outside the loop body, if no dependency found, techniques to eliminate
loop-carried dependencies on send and receive buffers and perhaps unrolling
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the loops will also be explored. This will provide another opportunity to move
MPI Wait(s) outside loops boundaries. Another future step is to work on cases
where we have 3-D data models and to explore how they can be safely overlapped
in communication.

We are also extending the Petal tool to do other automatic translation and/or
refactoring that will allow a smooth transition for legacy MPI systems to Exas-
cale systems, such as the use of one-sided communications and changing fur-
ther to use non-blocking and persistent collective operations (being proposed at
present in MPI-3.x).
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Abstract. Orchestrating data transfers between CPU and a coproces-
sor manually is cumbersome, particularly for multi-dimensional arrays
and other data structures with multi-level pointers common in scientific
computations. This paper describes a system that includes both compile-
time and runtime solutions for this problem, with the overarching goal
of improving programmer productivity while maintaining performance.

We find that the standard linearization method performs poorly for
non-uniform dimensions on the coprocessor due to redundant data trans-
fers and suppression of important compiler optimizations such as vector-
ization. The key contribution of this paper is a novel approach for heap
linearization that avoids modifying memory accesses to enable vectoriza-
tion, referred to as partial linearization with pointer reset.

We implement partial linearization with pointer reset as the compile
time solution, whereas runtime solution is implemented as an enhance-
ment to MYO library. We evaluate our approach with respect to multiple
C benchmarks. Experimental results demonstrate that our best compile-
time solution can perform 2.5x-5x faster than original runtime solution,
and the CPU-MIC code with it can achieve 1.5x-2.5x speedup over the
16-thread CPU version.

1 Introduction

Many-core coprocessors can provide orders of magnitude better performance
and efficiency for parallel workloads as compared to multi-core CPUs, and are
being widely adopted as accelerators for high performance computing. The x86-
compatible Intel Xeon Phi (MIC) coprocessor is a relatively recent member in the
many-core coprocessor family. It is designed to leverage existing x86 experience
and leverages popular parallelization tools, libraries, and programming models,
including OpenMP [7], MPI [12], CilkPlus [3] and TBB [28]. Even with the
c© Springer International Publishing Switzerland 2016
X. Shen et al. (Eds.): LCPC 2015, LNCS 9519, pp. 173–190, 2016.
DOI: 10.1007/978-3-319-29778-1 11
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support of these programming models, there are many challenging technical
issues that need to be solved to allow accelerators to become mainstream.

Accelerating parallel computing using many-core coprocessors requires speci-
fication of code regions (and corresponding data variables) that can be profitably
offloaded to the coprocessor. Orchestrating data transfers between CPU and
coprocessor gets challenging as the complexity of the data structures increases.

With the goal of improving developer productivity and maximizing applica-
tion performance, we focus on compile time and runtime solutions for automating
data transfers. While static arrays can be automatically handled by ICC com-
piler1 today, and solutions proposed in the literature [13,16,20,24,27] handle
dynamically allocated one-dimensional arrays, handling of dynamically allocated
multi-dimensional arrays and other structures with multi-level pointers is an
open problem.

It turns out that the problem is quite complex, particularly because the
choice of the mechanism used for automatically inserting data transfer clauses
impacts memory layouts and access functions (subscripts) on the coprocessor.
Because of the nature of the accelerators, the performance can be impacted in
multiple ways. Overall, in order for a solution to perform well:

– Redundant data transfers between the CPU and the accelerator should be
eliminated or minimized due to the significant data transfer time and the
limited device memory,

– Data transfer time should be reduced by utilizing Direct Memory Accesses
(DMA) since it can be as significant as kernel runtime,

– Memory allocation overheads on the accelerator (or even the host) should be
kept low since memory allocation is expensive on the accelerator, and

– Memory layout and access should allow for aggressive memory-related com-
piler optimizations (e.g., vectorization and prefetching) from the native com-
piler, as they are critical for obtaining performance from accelerators.

We observe that the prior solutions [15,20,27] do not consider these factors
together, as they focus primarily on data transfer reduction. In particular, the
effect of memory layout [6,34] on DMA, cache, and compiler optimizations have
been largely overlooked.

This paper describes an automated framework that uses both compile-time
and runtime solutions to address this problem. This system includes a simple
but effective compile-time solution, where we linearize the heap without having
to modify the memory accesses (subscripts), by using a pointer reset approach.
The idea is to identify and parse all the malloc statements for a given multi-
dimensional array and generate code for obtaining the total memory size (say s)
for that multi-dimensional array. The malloc statements for the given array are
then replaced by a single malloc statement that allocates a memory chunk of
size s. Code is generated to correctly reset all the pointers of the array into this
large chunk of memory. This allows the memory accesses to stay unmodified.

1 Intel C++ Compiler. http://www.intel.com/Compilers.
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This method scores well on all the four metrics mentioned above and maintains
code readability.

For the cases where our compile-time approach cannot apply, we also explore
runtime solutions. We investigate and optimize the performance of the runtime
memory management approach, by providing certain improvements to the exist-
ing coherence protocol. The best compile-time solution consistently outperforms
the optimized runtime scheme, but is not as generally applicable. In order to
combine performance with generality, we describe a mechanism for integrating
the two disjoint approaches using a simple source-to-source transformation. The
idea is to simultaneously and selectively insert implicit and explicit data transfer
clauses in the application at compile time.2

We have implemented our compile-time solution as a transformation using
the Apricot framework [27], and evaluated it within the context of application
execution on Xeon Phi coprocessor. We use a test suite comprising benchmarks
from different sources, which involve dynamically allocated multi-level pointers.
We show that our proposed compile-time solution can perform 2.5x-5x faster
than original runtime solution, and the CPU-MIC code with our compile-time
solution can achieve 1.5x-2.5x speedup comparing to the 16-thread CPU version.

Table 1. Key directives in common directive-based languages for accelerator
programming

Offload Synchronization Data transfer

LEO #pragma offload <signal,wait> <in,out,inout>

OpenAcc #pragma acc kernels <async,wait> <copy,copyin,copyout>

OpenHMPP #pragma hmpp codelet <asynchronous,synchronize> args[item].io=<in,out,inout>

OmpSs #pragma omp task <input,output,taskwait> <copy in,copy out>

OpenMPC #pragma cuda gpurun OpenMP <nowait> <c2gmemtr,g2cmemtr>

2 Motivation and Problem Definition

Table 1 summarizes popular directive-based languages, which allow the devel-
oper to mark code regions in the application from which offloadable tasks can
be generated by the compiler. These APIs are intended to improve developer
productivity and simplify code maintenance, by hiding the details of data trans-
fers and allocation on the accelerators. In this paper we work with LEO (Lan-
guage Extension for Offload), which supports the coprocessor offload interface
(COI), and is the primary annotation language for Xeon Phi. LEO provides
#pragma offload directive for marking offloadable code regions. This is similar
to OpenAcc’s #pragma acc kernels3. Execution on the CPU is suspended when
2 Due to the page limitation, we omit some details of the runtime optimization and

the source-to-source transformation to integrate two approaches, and all of our code
examples in this version. Please refer to our LCPC’15 conference version for more
details: http://www.csc2.ncsu.edu/workshops/lcpc2015/lcpc15proc.pdf.

3 OpenACC: Directives for Accelerators. http://www.openacc-standard.org/.
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#pragma offload is encountered, continued on the coprocessor and then resumed
on the CPU after the offloaded code region has executed to completion. Special
synchronization primitives (e.g., signal/wait) can be used for enabling asyn-
chronous offload.

2.1 Challenges in CPU-to-coprocessor Data Transfers

In order to orchestrate data transfers between CPU and coprocessor, the devel-
oper has to specify in/out/inout clauses along with size for each data vari-
able. In the case of a single-dimensional array, only one contiguous memory
region needs to be transferred. For multi-dimensional arrays, on the other hand,
numerous array components scattered over memory have to be handled. This
can be complex, cumborsome and non-performant. Note that this complexity
arises because of the way C versions of most existing scientific applications allo-
cate memory– an N dimensional array is allocated by allocating one-dimensional
arrays inside an N−1 dimensional loop. In benchmarks such as Multi-Grid (MG)
arrays are non-rectangular, which adds to the complexity.

Recall that in the previous section, we had stated four requirements while
addressing the problem, which included needs for fully utilizing DMA, and reduc-
ing memory allocation overheads. To motivate their impact, we present certain
experimental observations. Consider a dynamic two-dimensional array case. Each
of the memory regions is allocated and transferred independently, using a sep-
arate offload statement (in a for loop). Automating this is not hard, once the
malloc statements, memory accesses and offload code regions have been tracked.
This is similar to what CGCM [15] does, which is the state-of-the-art compiler-
based communication management system for GPUs. However, this approach
leads to high memory allocation overheads as well as DMA suppression (since
multiple small memory regions are transferred separately). Figure 1(a) compares
the performance of this approach with one where data is linearized and trans-
ferred by a single offload statement, for a matrix addition micro-benchmark.
Figure 1(b) shows the impact of number of offload statements on data transfer
time. The results are shown for various array sizes. For a fixed array size, using
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Fig. 1. (a) Performance of matrix addition with Non-linearized vs. Linearized data
transfers, (b) Relationship between number of offload statements (for different array
components) and data transfer time. (For a fixed data size, using fewer offload state-
ments is beneficial, due to better DMA utilization and smaller memory allocation and
offload overhead.) (c) Performance comparison between MYO and explicit data trans-
fers using linearization for dgemm, (d) Total data transfer size for both. (MYO transfers
less data but performs worse.)
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fewer offload statements results in better DMA utilization and lower offload and
memory allocation overhead.

In addition to the explicit data specification model, LEO also supports
an implicit data transfer model and corresponding runtime mechanism (called
MYO [30]) to automate data transfers between CPU and coprocessor. Any data
element marked with the Cilk shared clause is automatically synced between
the two processors. In the implicit model, offloadable code regions are marked
with Cilk offload. MYO resembles state-of-the-art memory management solu-
tions for GPU (Dymand [14] and AMM [26]), which all implement runtime data
coherence mechanisms and create the illusion of virtual shared memory between
the CPU and coprocessor.

We evaluate MYO with respect to a number of benchmarks and find that
explicit data transfer specification using in/out clauses outperforms MYO by
up to 3x (Fig. 1(c) and (d) show an example for matrix multiplication). To
understand the performance difference, we investigate bottlenecks of the runtime
memory management scheme and find that the mechanism that keeps track of
dirty pages for minimizing redundant data transfers ends up imposing huge
overheads. After disabling tracking of dirty pages, we are able to significantly
improve performance of the runtime management scheme.

3 Background: Complete Linearization

Array linearization is commonly used to minimize the number of pointer indirec-
tions (and load instructions) for static arrays. For example, a two-dimensional
array A[i][j] would be accessed as A[i ∗ N + j] instead of (A[i])[j], where N is
the stride for i. The memory layout is not changed, only the memory accesses
are linearized. This approach can be extended to facilitate efficient transfer of
dynamically allocated multi-dimensional arrays between CPU and coprocessor,
by linearizing the memory layout in addition to the memory accesses for dynam-
ically. We refer to this approach as complete linearization. Next, we will describe
this approach and point out its limitations.

Fig. 2. Different linearization schemes for handling data transfers for dynamically
allocated multi-dimensional arrays
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In complete linearization, all malloc statements for a given multi-dimensional
array are replaced by a single malloc statement in the application source code.
Instead of allocating multiple small chunks of memory for different array compo-
nents, a single contiguous chunk of memory is allocated. Accordingly, the memory
accesses are linearized as well. In essence, the complete linearization transforms
a dynamically allocated multi-dimensional array into a one-dimensional array, as
shown in Fig. 2(a).

Algorithm. To formally state the underlying compile-time transformation: let
Dm be the data layout for a multi-dimensional array in the original code, let Am

be a memory access, let Ds be the data layout for the array in the transformed
code and let As be a memory access, our goal is to implement two functions: (i)
F : Dm → Ds and (ii) M : Am → As.

Let sz0, sz1,..,szk be the size of the elements in a given dimension. The mal-
loc statement corresponding to element i in the original source code would be
malloc(szi ∗ sizeof(datatype)). For a dimension with equal-sized elements the
stride value would be s = sz0 = sz1,.., = szk. For a dimension with variable-size
elements (as in Fig. 2(a)), the stride value would be chosen as s=max(sz0, .., szk).
For dimension di let the stride be si and the number of elements of the first
dimension be m. For an n-dimensional array, the total memory size would be
total = m ∗ s1 ∗ s2.. ∗ sn−1 and the corresponding malloc statement in the trans-
formed source code would be malloc(total ∗ sizeof(datatype)). Let A be an n-
dimensional array. Memory access A[m1][m2]..[mn] in the original source code is
transformed into A[m1 ∗ s1 ∗ s2..sn−1 + m2 ∗ s2 ∗ s3..sn−1.. + mn].

Pros and Cons. As compared to allocating each row and column of the multi-
dimensional structure separately, there are four distinct benefits of this approach:
(i) since multiple malloc statements are replaced by a single statement, memory
allocation overhead is reduced on both the CPU and coprocessor side, (ii) the
overall data locality is improved because of contiguity, (iii) DMA utilization is
maximized, since one large chunk of memory is transferred instead of multiple
small chunks, and (iv) only one offload statement is required for data transfer.

This method has three main drawbacks. First, all memory accesses have to
be identified, analyzed and modified using function M . Strong alias analysis is
required. The mapping can potentially be complex and thus a source of bugs in
the generated code, not to mention the loss of readability.

Second, since the subscripts are made complex, important compiler optimiza-
tions get suppressed in many cases. Optimizations like auto-vectorization and
prefetching are sensitive to compiler’s ability to recognize the memory access
pattern. As we show later, losing important compiler optimizations (especially
vectorization) can lead to significant performance loss on Intel MIC.

Third, for multi-dimensional arrays that have variable sized rows or columns,
there is a trade-off between the linearized data size and the complexity of func-
tions F and M . If we use uniform (maximum) length for each row or column,
functions F and M are simplified, but redundant data transfers are introduced,
as shown in Fig. 2(a). If variable stride values are used for each row/column, no
redundant data transfers take place, but the complexity of F and M increases
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substantially. The stride values need to be stored in a table, transferred to the
coprocessor and looked up during memory access. For example, instead of map-
ping A[i][j] to A[i ∗ s1 + j], it has to be mapped to A[i ∗ stride lookup(i) + j].
This results in increased data transfer overheads and suppression of compiler
optimizations. The use of uniform (maximum) stride typically performs better
than a stride-lookup approach.

3.1 Stride-Bucket Optimization

To address the multi-dimensional arrays that have variable sized rows or
columns, we design an optimization to reduce the amount of redundant data
transfers, without significantly increasing the complexity of functions F and
M . This optimization strives for a balance between the complexity of lineariza-
tion and the amount of data transfer. The basic idea is to partition the multi-
dimensional array into a finite number of buckets along the first dimension.
Across these buckets, different stride values are used, whereas within each bucket,
only one stride value is used. The current design uses two buckets, as described
next.

Let sz0, sz1,..,szl be the size of elements in the first dimension. It is
partitioned into two buckets P1 and P2, containing m + 1 and l − m ele-
ments respectively. For P1, the stride value sP1 = max(sz0, sz1, .., szm). Sim-
ilarly for P2, the stride value sP2 = max(szm+1, szm+2, .., szl). The element
m serves as the bucket boundary. The size of the final array would be size =
sP1 ∗ (m+ 1) + sP2 ∗ (l−m). Element m is picked as the bucket boundary, such
that size is minimized for m. For a given array, we first search for an optimal
partitioning by trying different bucket boundaries. Interestingly, with the help
of two assistant arrays recording the max stride values starting from the begin-
ning and the end to the current position, our algorithm for picking the optimal
partitioning runs in O(l) time. Once the optimal partitioning is obtained, we
calculate the total size of the final array and insert the new malloc statement.
We then parse the code to replace each array access with the mapping function
M . Finally, we generate code for data transfer and code offload.

Figure 2(b) shows an example for a two-dimensional array– the bucket bound-
ary is 2, the two stride values are 3 and 5 respectively. As compared to the mem-
ory layout in Fig. 2(a), the new memory layout in Fig. 2(b) is around two-thirds
of the size. The mapping function M now contains a branch operation–the stride
is determined based on which of the two buckets the element belongs to. If the
bucket boundary is k, the stride for the first bucket is s1 and the stride for the
second bucket is s2, element A[i][j] would be accessed as A[index + j], where
index = (i < k)?(i ∗ s1) : (k ∗ s1 + (i − k) ∗ s2).

4 Compile-Time Automation of Data Transfers

In this section, we propose a novel linearization technique to handle the limi-
tations of complete linearization (with and without Stride-bucket optimization).
This is the main contribution of the paper.
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4.1 Partial Linearization with Pointer Reset

Basic Idea. Complete linearization method suffers from three main drawbacks,
as mentioned earlier. The first and second drawbacks arise from modification
of memory accesses (i.e., function M). The third drawback arises from the use
of uniform strides during memory allocation (i.e., function F ), which allows
simplification of M but imposes data transfer overheads, since holes are included
in the memory layout.

We note that all three drawbacks can be eliminated if: (i) memory accesses
do not have to be modified, and (ii) a single contiguous chunk of memory can
be allocated for the entire multi-dimensional array without any holes in it. Our
partial linearization approach achieves these two goals, using the following simple
observations. First, only the last dimension of a multi-dimensional array contains
the actual data, all the other dimensions only contain pointer addresses to get
to this data. Now, if the data in the last dimension is linearized (i.e. we address
the goal (ii)), the memory allocation and setting up of pointers can be done
separately on both the CPU and the coprocessor. More specifically, the pointer
structure of the multi-dimensional array can be reconstructed on the coprocessor
side by simply replicating the CPU-side code. The pointer sizes do not have to
be transferred. There is no mapping function M in this approach, since memory
accesses are not modified (and we accomplish the goal (i)).

Algorithm. The details of partial linearization are given in Algorithm 1. The
linearization procedure comprises three main steps. In the first step (i.e., function
Fdata), malloc statements for a given multi-dimensional array A are parsed and
code is generated for computing the total data size (total sz) of the array by
adding up the size of each element in the last dimension. A malloc statement is
generated to allocate a memory chunk dataA of total sz.

In the second step (i.e., function Fpointer), malloc statements for the last
dimension are replaced by assignment statements, in order to set up the pointers
into the contiguous chunk of memory allocated in the first step. For example,
for each malloc of an integer array A, the statement A[i] = (int∗)malloc(sizei ∗
sizeof(int)) is replaced by A[i] = pda, pda = pda+ sizei, where sizei is the size
of the ith element and pda is a moving pointer. Pointer pda is initialized to the
starting address of the allocated memory chunk (i.e., dataA) and incremented
with every pointer assignment.

In the third step, offload statements and data transfer clauses are generated
for transferring the memory chunk dataA to the coprocessor and back. The
code for pointer allocation and construction (i.e., Fpointer) is replicated on the
coprocessor side. Therefore, no stride information needs to be transferred.

As another note, placement of memory allocation statements and data trans-
fer clauses in the code is important for performance. In our implementation, we
hoist malloc statements, offload statements and data transfer clauses as far up
the call graph as possible. By hoisting statements outside loops and up the call
graph, redundant execution is minimized and memory reuse (across multiple
offloads) is enabled.
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Algorithm 1. PartialLinearizationPointerReset(Mul dim var set D)

1: for each multi-dim var A ∈ D do
2: if A used by an offload region and satisfies legality checks then
3: Dsub.append(A)
4: end if
5: end for
6: for each multi-dim var A ∈ Dsub do
7: /*Linearization Function Fdata()*/
8: � Parse malloc stmts of A
9: /*---Calculate total data size---*/

10: � Replicate the malloc stmts for last dimension
11: total sz = 0
12: for each replicated malloc stmt:

A[m1]..[mn] = malloc(sizei∗sizeof(type)) do
13: � Replace it by: total sz += sizei
14: end for
15: � Insert linear-alloc: dataA = malloc(total sz * sizeof(type))
16: /*Pointer-Reset Function Fpointer()*/
17: /*---Allocate and reset pointers---*/
18: pda = dataA

19: for each original malloc-site for last dimension:
A[m1]..[mn] = malloc(sizei∗sizeof(type)) do

20: � Replace it by:
A[m1][m2]..[mn] = pda, pda += sizei

21: end for
22: /*---Generate offload code for coprocessor---*/
23: � Generate dataA malloc clause on coprocessor
24: � Replicate Fpointer() code on coprocessor
25: for each offload region R do
26: if A is used by R then
27: � Generate data transfer and offload clauses for coprocessor
28: end if
29: end for
30: � Apply data reuse and hoisting opt for dataA

31: end for

Legality Checks: Because partial linearization modifies the values of pointers,
a compiler should perform the code transformation in a very conservative way
to ensure the correctness. In our case, our compiler applies partial linearization
with pointer reset only if certain conditions are met. We summarize these condi-
tions as follows. The first condition is that all elements in the multi-dimensional
array must be of the same size. For example, if the code is in C + +, we may
have the polymorphism issue. An existing data flow analysis reported in the
literature [29] is used for this purpose. The second condition is that a pointer
must have only one malloc statement associated. The goal is to ensure that
there is no memory reallocation or conditional memory allocation, which may
make our transformation unsafe (if at all applicable), and we prefer not to apply
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them in our implementation. For performing this check, malloc statements and
memory accesses are tracked using use-def chains for arrays/pointers that are
used in offloadable code regions, as identified by liveness analysis module within
Apricot [27]. We collect all malloc sites for a specific multi-dimensional array,
and check whether any pointer is represented multiple times. The third condi-
tion is that the value of a pointer must be unchanged during the computation.
If the value of a pointer is changed, we may either miss copying data or read
data from a wrong place on the accelerator.

These legality conditions are checked by our source-to-source compiler for
each array. If an array fails to satisfy one or more conditions, it is annotated as
such and handled by the runtime memory management system, as described in
Sect. 5. For most scientific computing benchmarks, these legality conditions hold
and our proposed approach can be applied.

4.2 Interaction with Compiler Optimizations

Our source-to-source translator (or another comparable system) depends upon
the native compiler (ICC in the case of Xeon Phi) for accelerator for obtaining
performance. Our experiments have shown that the various optimizations per-
formed by the native compiler have a far more significant impact on the overall
performance than the overheads of data transfer and other operations associated
with the offload. As we mentioned, one of the critical considerations in automat-
ing handling of data transfers is preserving optimizations that would normally
be performed by the compiler.

In Intel MIC (Xeon Phi), the SIMD width of each core is 512-bit, which means
up to 16 floating point operations can be executed in one cycle on each of its
60 cores. This makes vectorization crucial for performance. Also, with increas-
ing parallelism, memory accesses can become the bottleneck, and therefore, soft-
ware prefetching is very important. Loop optimizations such as distribution, tiling,
and interchange can also significantly impact performance, especially when they
enable additional vectorization or prefetching.Akey advantage of partial lineariza-
tion is that original subscripts are not modified, whereas, complete linearization
introduces more complex subscripts. While theoretically a compiler should be able
to handle complex linearized subscripts, in practice, product compilers often fall
short, due to aliasing, pointer arithmetic and complex interactions between the dif-
ferent optimizations [22]. We have verified this for the latest version of ICC as of
writing this paper.

We evaluated on an example that involves a structure and a non-unit stride.
From the optimization reports, we see that for the version with non-linearized
subscripts, data dependencies are correctly resolved and the innermost loop is
vectorized. While for the linearized version, auto-vectorization is not enabled by
the compiler, which is likely because the compiler cannot conclude that there are
no dependencies. In another example involving a three-dimensional arrays addi-
tion inside an OpenMP loop (not shown due to space constraints), we observed
that software prefetching is not facilitated by the compiler. For the correspond-
ing version with non-linearized subscripts, 4 cache lines are prefetched for the
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outer-most loop and 24 lines are prefetched for the inner-most loop. We continue
this discussion in Sect. 5.

5 Evaluation

In this section, we evaluate our compile-time and runtime solutions in detail,
and compare our CPU-MIC solution with multi-core CPU solution.

5.1 Implementation

We have implemented the compile-time solution for automatic insertion of data
transfer clauses using partial linearization with pointer reset approach described
in Sect. 4.1. It has been implemented as a source-to-source transformation on top
of the Apricot [27] framework. Apricot provides modules for liveness analysis,
handling of one-dimensional arrays and identification of offloadable code regions.
We have also modified the coherence mechanism in MYO4. The solution archi-
tecture is shown in Fig. 3.
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Fig. 3. Overall solution architecture

5.2 Experimental Methodology

The test suite consists of seven C benchmarks from different sources (shown
in Table 2). These benchmarks contain dynamically allocated multi-dimensional
arrays/multi-level pointers and OpenMP parallel regions. We particularly note
that the first three benchmarks, MG, FT, and 330.art, are all more than 1, 500 lines
each (330.art is more than 2000), and are used to demonstrate the applicabil-
ity of our approach (and the current implementation) on full-scale applications.
All experiments were conducted on a Xeon E5-2609 server equipped with an Intel
MIC (Xeon Phi) card and the necessary software. Xeon E5-2609 has 8 cores, each
running at 2.40 GHz with 2 threads per core. Xeon Phi has 61 cores each run-
ning at 1.05 GHz with four threads per core, a total of 32 MB L2 cache and 8 GB
GDDR5memory.Our source-to-source compiler is invoked on eachbenchmark and
the transformed source code is compiled with ICC at -O3 with additional compiler
flags (-openmp -parallel [-ansi-alias] [-fno-alias]).
4 As described in http://www.csc2.ncsu.edu/workshops/lcpc2015/lcpc15proc.pdf.
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Table 2. Benchmarks

Benchmark Source Description

MG NAS Parallel in C Multi-Grid on meshes

FT NAS Parallel in C 3D fast Fourier Transform

330.art SPEC OMP Image recognition by neural network

Heat3D Heat 3D Heat transfer simulation

27stencil EPCC 3-d stencil kernel

convolution CAPS OpenACC 2-d stencil kernel

dgemm LINPACK Double general matrix multiplication

There are several objectives in our evaluation. We evaluate the overall per-
formance of our partial linearization with pointer reset solution, and compare
it with the runtime method through MYO, as well as the complete lineariza-
tion (optimized with stride-bucket, where applicable). Besides comparing the
execution times, the amount of data transferred over PCIe is also measured and
reported. To demonstrate the benefits of using the accelerator after applying our
solution, we also evaluate the performance of our best multi-core CPU+MIC ver-
sion over the multi-core CPU version.

We also individually evaluate the benefits of particular optimizations. Per-
formance of the runtime memory management system (MYO) is evaluated with
and without our optimization, and similarly, the performance of the complete lin-
earization approach is evaluated with and without the stride-bucket optimization.
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Fig. 4. Performance comparisons for all benchmarks: optimized MYO, complete lin-
earization with stride-bucket, and partial linearization compared with respect to (a)
Execution time and (b) Total data transfer sizes; (c) Execution time comparison
between multi-core CPU, and multi-core CPU+MIC for large input data sizes. The
CPU-MIC versions are obtained with our partial linearization

5.3 Results and Analysis

Overall Performance Evaluation. The overall performance comparison is
shown as Fig. 4. Figure 4(a) compares the performance of complete linearization
(further optimizes using the stride-bucket method) with our partial linearization
approach. 1.6x-2.6x speedup is obtained with the partial linearization approach
for five out of the seven benchmarks, whereas nearly 1.25x speedup is observed
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Table 3. Impact of the two linearization approaches on key compiler optimizations

Benchmark Vectorization Prefetching LoopDist

Comple
Linear

Partial
Linear

Comple
Linear

Partial
Linear

Comple
Linear

Partial
Linear

MG 10 10 131 542 0 3

FT 15 16 70 74 0 3

330.art 1 12 50 98 2 0

Heat3D 2 3 32 72 0 0

27stencil 2 3 40 48 0 12

convolution 1 1 10 10 0 0

dgemm 1 1 14 17 0 0

for the other two. While the approach benefits all benchmarks, the reasons for
performance gains differ considerably. We now explain these, referring also to
data transfer volumes (Fig. 4(b)), and details of compiler optimizations enabled
for different versions (Table 3).

For MG, majority of the speedup comes from reduction in the total amount of
data transferred as shown in Fig. 4(b), since it is a data-intensive benchmark with
variable-size rows. We also notice more aggressive prefetching for the partial lin-
earization version: total number of cache lines prefetched goes up from 131 to 542
(Table 3). For Heat3D and 27stencil, the main loop gets vectorized for the partial
linearization version, resulting in a 2x speedup. Number of prefetched cache lines
goes up from 32 to 72 for Heat3D. We also notice a significant increase in loop dis-
tribution for 27stencil: with the pointer reset version 12 loops are distributed as
opposed to none for complete linearization. Both these benchmarks contain three-
dimensional arrays. For 330.art a total of 12 loops are vectorized with partial lin-
earization, as opposed to 1 for complete linearization. Prefetched cache lines go up
from 50 to 98. This benchmark contains a two-dimensional struct array. For dgemm
the outer loop gets vectorized for the pointer reset version, while the inner loop
is vectorized for the complete linearization version. With outer loop vectorization
the performance goes up by 1.5x.

Figure 4(a) also compares the performance of optimized MYO with both com-
plete linearization (using stride-bucket) and pointer reset approach. Optimized
MYO frequently outperforms complete linearization. However, partial lineariza-
tion with pointer reset comes out on top. It performs 1.5x-2.5x faster than opti-
mized MYO for most benchmarks and around 6x faster for FT.A.

Next, data transfer volumes are shown in Fig. 4(b). Except for MG, pointer
reset and complete linearization have identical data transfers. Optimized MYO
transfers around 1.5x more data on average for most benchmarks.

Finally, Fig. 4(c) shows the performance of the best CPU-MIC version for
each benchmark (obtained with the partial linearization approach) and com-
pares it with the original CPU version. The original CPU version uses 16 threads,
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while the CPU-MIC version uses 16 threads on the CPU and around 240 threads
on Intel MIC. The CPU-MIC version runs 1.5x-2.5x faster for six out of the
seven benchmarks. No gains are obtained for MG, which is a highly data inten-
sive benchmark. Considering the benefits of using partial linearization that we
reported earlier, it can be seen that most performance gains from the use of the
coprocessor will not be possible without optimizing data transfers.

Optimizations Evaluation. In our overall evaluation above, we use the opti-
mized version of runtime MYO solution and complete linearization (with stride-
bucket) solution. We evaluate these optimizations as following to validate their
efficacy.

Optimized MYO: Fig. 5(a) compares the performance of MYO with optimized
MYO. Figure 5(b) shows the total amount of data transferred for the two MYO
versions. With the modified MYO, the amount of data transfer increases by 1.5x
on average (most of it comes from the increase in communication from coproces-
sor to CPU). This is because dirty pages are not tracked in the modified coher-
ence mechanism. Despite an increase in data transfer, significant performance
gains (1.5x-3.2x) are observed with modified MYO. There is a noticeable drop in
the execution time of coprocessor side code with the modified coherence mecha-
nism. Also, we notice a very small increase in the time spent on data transfers,
which can be attributed to DMA.

Complete Linearization: Fig. 5(c) compares the performance of the complete
linearization approach with the optimized one using stride-bucket, for varying
input data sizes (class=W,A,B). MG is the only benchmark in our test-suite
containing arrays with variable-size elements in the first dimension. Optimized
linearization approach yields more than 1.5x speedup for classes A and B. There
is no difference in the array data size between classes A and B, hence similar
speedup is observed. Xeon Phi coprocessor runs out of memory for class C and
above when using complete linearization. Data transfers are shown in Fig. 5(d).
Stride-bucket linearization results in around 1.8x reduction in data size.

6 Related Work

In the last few years, numerous compilation systems have been built for accel-
erators. OpenMPC [20] compiler automatically converts OpenMP code to GPU
kernels and in the process inserts data transfer clauses. Baskaran et al. [1] achieve
the same in a system where the primary focus is on using a polyhedral framework
for memory management. The PGI [13] compiler also automatically inserts data
transfer clauses for OpenAcc applications. JCUDA [33] based on Java can auto-
matically transfer GPU function arguments between CPU and GPU memories,
however, it requires annotations indicating the live-in/out information for argu-
ments. More recently, Sidelnik et al. [32] handle data movement problem within
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Fig. 5. Optimized MYO vs. MYO: (a) Execution time, (b) Total data transfer size;
performance of complete linearization with and without stride-bucket optimization for
varying input data sizes: (c) Execution time, (d) Total data transfer size

the scope of supporting Chapel, a high level parallel programming language, on
GPUs, and provide both implicit and explicit data transfer mechanisms. Because
these, as well as other comparable systems, generate the accelerator (CUDA)
code also, interaction of the offload mechanism with optimizations inside the
native compiler are not a concern for these systems.

Apricot [27] automatically inserts LEO offload and data transfer clauses in
OpenMP applications for the Intel MIC coprocessor, using liveness analysis to
determine data variables that need to be copied into and out of the coprocessor.
It does not handle pointer arithmetic, aliasing or pointer indirection for dynam-
ically allocated data. Similarly, statically allocated arrays can be automatically
handled by ICC for Intel MIC without additional support. The challenge we
have addressed here is to handle dynamically allocated multi-dimensional arrays
and other structures with multi-level pointers.

Our work is closest to CGCM [15], which is a state-of-the-art compiler-based
data management and optimization system for GPUs. CGCM incorporates a
runtime library that tracks memory allocation at runtime and replicates alloca-
tion units on the GPU. It supports two key optimizations– map promotion and
alloca promotion, to hoist runtime library calls and local variables up the call
graph. However, CGCM does not linearize the heap. As a result, all the memory
regions allocated for a multi-dimensional array or multi-level pointer are allo-
cated and transferred separately. This would suffer from high memory allocation
overheads and DMA suppression, as confirmed by our experiments for Intel MIC.
More recently, Margiolas and O’Boyle [23] propose a portable and transparent
data communication optimization, which involves analyzing the memory alloca-
tions for the data used in both CPU and GPU. Optimized memory allocation
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policies are then used for such memory segments. Their work focuses on opti-
mization of OpenCL code which already has (possibly non-optimal) data transfer
code, while our work focuses on generating the data transfer code automatically.

Moreover, some recent efforts with programming models like OmpSs [4] and
libWater [11] handle data transfers on heterogeneous clusters by using optimized
runtime methods. Dubach et al. [8] also adapt an optimized runtime method to
handle data transfer, while they compile Lime, a high level language targeting
heterogeneous systems. In addition, DyMand [14], AMM [26], and ADSM/G-
MAC [10] are all runtime systems for automatic memory management for GPUs.
Each of them implements runtime coherence mechanisms for supporting a vir-
tual shared memory abstraction for the CPU and the GPU. They bear strong
resemblance to MYO [30] and inherit the properties of software DSMs [2,21] and,
to an extent, the PGAS [5,9,25,31] languages. AMM uses compiler analysis to
optimize placement of coherence checks, but tracks read and write operations in
order to monitor coherence status of Rails, similar to MYO’s Arenas. We have
implemented our optimizations on top of MYO, and a novel component of our
effort is integrated static and runtime optimizations.

Our work applies the ideas in data layout optimizations [6,17–19,34] to
automation of data transfers between CPU and coprocessor. By modifying the
malloc sites and allocating one large chunk of memory instead of numerous
small chunks for the array components distributed over memory space, we min-
imize memory allocation overheads (for both CPU and coprocessor), maximize
DMA utilization for fast and asynchronous data transfer over PCIe and improve
cache performance for both CPU and coprocessor. By retaining original mem-
ory accesses in the code, we allow ICC to be able to apply optimizations for
multi-dimensional arrays.

7 Conclusions

This paper addresses the problem of automating and optimizing data trans-
fers for coprocessors, with emphasis on dynamically allocated multi-dimensional
arrays and other data structures with multi-level pointers. Our work includes
a novel compiler-based approach, partial linearization with pointer-reset. The
benefits of this approach include reduced data transfer volumes, use of DMA,
reduced overheads of memory allocations, and most importantly, no modification
to the memory access subscripts, which turns out to be crucial for preserving
key compiler optimizations. This approach outperforms complete linearization
by 1.6x-2.5x on average. We also devise a stride-bucket approach for optimizing
the performance of the linearization method.
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Abstract. NUMA-aware parallel algorithms in runtime systems
attempt to improve locality by allocating memory from local NUMA
nodes. Researchers have suggested that the garbage collector should pro-
file memory access patterns or use object locality heuristics to determine
the target NUMA node before moving an object. However, these solu-
tions are costly when applied to every live object in the reference graph.
Our earlier research suggests that connected objects represented by the
rooted sub-graphs provide abundant locality and they are appropriate for
NUMA architecture.

In this paper, we utilize the intrinsic locality of rooted sub-graphs to
improve parallel copying collector performance. Our new topology-aware
parallel copying collector preserves rooted sub-graph integrity by moving
the connected objects as a unit to the target NUMA node. In addition,
it distributes and assigns the copying tasks to appropriate (i.e. NUMA
node local) GC threads. For load balancing, our solution enforces local-
ity on the work-stealing mechanism by stealing from local NUMA nodes
only. We evaluated our approach on SPECjbb2013, DaCapo 9.12 and
Neo4j. Results show an improvement in GC performance by up to 2.5x
speedup and 37 % better application performance.

Keywords: NUMA · Multi-core · Work-stealing · Runtime support ·
Garbage collection

1 Introduction

Managed runtime systems—such as the Java Virtual Machine (JVM) and Com-
mon Language Runtime (CLR)—successfully abstract low-level platform-specific
details such as hardware configuration and memory management. However devel-
opment efforts for these runtime systems may struggle to cope with rapid evolu-
tion and diversity in hardware deployments. Contemporary multicore processors
are often designed with a distributed memory architecture to improve memory
bandwidth. This architectural layout means that individual processor cores may
incur non-uniform memory access (NUMA) latency. Therefore, multi-threaded
applications running on several cores may access remote memory. A garbage
collected runtime may cause non-determinism in data placement, which will lead

c© Springer International Publishing Switzerland 2016
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to unpredictable, suboptimal application performance, if the runtime system is
not adapted to be aware of the underlying NUMA hardware.

A large body of research attempts to tackle data placement on NUMA archi-
tectures by means of improving locality and balancing allocation across memory
nodes, e.g. [6]. A data placement policy that allocates data close to the core most
frequently accessing it should minimize access time. However, locality-aware
data placement policies could conflict with NUMA, perhaps through imbalance
of access causing memory bus traffic saturation to some NUMA nodes. Other
problems with NUMA imbalance include cache capacity issues, whereas using
off-node caches may provide abundant memory space, e.g. [17].

In OpenJDK Hotspot (like many Java runtime systems) the generational
Garbage Collector (GC) moves objects between spaces in the heap. For NUMA
platforms, the existing memory placement and movement policies of the GC
require re-engineering. Initially, the mutator threads use thread-local alloca-
tion buffers (TLABs) to allocate new objects in the young generation. Hotspot
devolves memory mapping to the operating system. For example, Linux uses
the first-touch policy as the default NUMA placement policy, which means that
memory pages are mapped to the NUMA node associated with the core that
first accesses a memory address in that page. As an advanced HotSpot configu-
ration option, the user can choose a pre-defined JVM NUMA allocation policy
(-XX:+UseNUMA) to map TLAB memory pages to local nodes.

Furthermore, GC threads also require local buffers, called promotion local
allocation buffers (PLABs). A PLAB is used to move objects to the survivor
spaces (in the young generation) and to the old generation. Mapping PLABs
to NUMA regions remains the responsibility of the OS. Thus, the GC has the
potential to change an object’s NUMA node location after moving that object,
which means subsequent mutator operations may incur remote access overhead.
There is a need for topology awareness in the GC, which must take into account
the NUMA architecture.

This paper extends our earlier work [1] which provided empirical observa-
tions of strong object locality in portions of the reference graph reachable from
a single root reference. We refer to these graph components as rooted sub-graphs.
In this paper, we modify the copying collector of the Hotspot JVM and imple-
ment a topology-aware parallel copying collector to preserve sub-graph locality
and integrity. Our solution does not require any programmer intervention. We
evaluated our algorithm with various benchmarks and the results show that
leveraging rooted sub-graph locality improves substantially the GC performance
(up to 2.5x speedup) and consequently improves application performance by
up to 37%.

In this paper, we describe the following key contributions to the HotSpot
GC:

(a) We improve access locality by making the collector threads process mostly
local objects.

(b) We improve work-stealing locality such that idle threads fetch work from
local threads’ queues.
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2 Motivation

The existing ParallelScavenge copying GC in the Hotspot JVM uses conventional
techniques for:

1. task generation: scanning memory areas that contain root references, e.g.
mutator stacks, static areas, JNI handlers. At least one GC thread is used
to scan each memory area. These task-generating threads enqueue root ref-
erences locally, in a per-thread queue. Our implementation distinguishes
between root references and non-root references by storing them in different
queues; the default scheme does not do this.

2. distribution: each GC thread processes its own local queue of references—
following references and processing (e.g. copying objects). Our implementa-
tion directs references to appropriate queues, based on the underlying NUMA
topology.

3. load balancing: when a GC thread’s local reference queue is empty, it ran-
domly steals a single reference from the back of another thread’s queue. This
is a typical work-stealing approach. Our implementation steals from nearer
thread queues in terms of the NUMA topology, whereas the default scheme
steals from an arbitrary queue in a NUMA-agnostic fashion.

The key objective is to keep the GC threads busy collecting the heap regard-
less of the complex NUMA architecture. However, if a GC thread processes
distant objects, it incurs remote memory access overhead. Further, the GC may
relocate objects to a different NUMA node (e.g. during a copy-promotion); hence
degrading mutator thread locality. Our topology aware GC scheme aims to alle-
viate both these problems.

Existing NUMA locality improvements for GC copying algorithms have a
per-object granularity of work. Tikir and Hollingsworth [29] calculate the target
NUMA node for an object copy by profiling thread access patterns to each
object. Ogasawara [22] identifies the dominant thread of an object, which is
likely to access the object most frequently. This analysis is based on references
from thread stacks or the object’s header.

Conversely, Alnowaiser [1] identifies rooted sub-graphs which contain a root
reference and its descendant references in the reference graph. Rooted sub-graphs
are shown to exhibit abundant locality, i.e. the majority of objects in a sub-graph
are located in the same NUMA node as the root of that sub-graph. Selection of
the rooted sub-graph as the work granularity for GC is appropriate for NUMA
systems for two reasons:

1. When a GC thread processes a task, i.e. a rooted sub-graph, it is likely to
be processing objects in a single NUMA region—ideally local for that GC
thread.

2. If parallel GC threads operate in different NUMA regions on thread-
local data, there is a reduction in cross-node memory traffic, reducing bus
contention.
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3 Topology-Aware Copying Collector

Our proposed topology-aware parallel copying collector leverages the locality
that exists in rooted sub-graphs. Since we set the work granularity to be a
rooted sub-graph, the main principle in our approach is to preserve the sub-
graph integrity by processing its connected objects in a single NUMA node. As
a result, a GC thread would move the entire rooted sub-graph to a single new
location. For further locality gains, GC threads should process local-node root
objects. We achieve this by organizing root objects according to NUMA nodes.

Moreover, when GC threads exhaust their local work queues, they should
prefer to steal references from non-empty local queues of sibling cores, i.e. cores
that are in the same NUMA node. This mechanism enables low access latency for
work-stealing threads, and benefits from accessing shared resources (e.g. caches).
Moreover, stolen objects will be moved to the same NUMA node as non-stolen
objects in the same rooted sub-graph. Therefore the locality remains consistent.

Fig. 1. Various topology-aware GC schemes. (a) aggressive scheme only processes local-
node tasks (b) hybrid scheme distributes tasks across all nodes but steals from local
node only. (c) relaxed scheme processes random tasks from any node

3.1 Data Structures

Figure 1 illustrates the data structures used in our scheme. At VM initialization,
we create as many double-ended queues as there are NUMA nodes, to store root
references for processing. Since GC threads run concurrently, we need to ensure
that enqueue and dequeue operations are thread safe. For this purpose, we use
the OpenJDK Arora queue which supports single producer/multiple consumers.
GC threads pop root references from one end safely using atomic operations;
however, the other end is guarded such that a thread must lock the queue before
doing any enqueue operation.

To reduce lock contention on Arora queues, we buffer root references in
thread-local queues. When a GC thread completes its root scanning task,
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it enqueues discovered root references into the corresponding Arora queue. The
memory footprint of this design is small since the root set size is small compared
to the live object set.

Threads that complete root scanning tasks obtain root references from Arora
queues. In order to shorten the time between root scanning and enqueue oper-
ations, when a thread-local queue reaches a threshold length, the GC thread
enqueues all references in that thread-local queue to the corresponding Arora
queue. We set the threshold to 100 references.

3.2 Algorithm

Copying collection starts with a set of predefined tasks that are created in a
sequential block of code. The VM thread, which runs the sequential code, pop-
ulates a shared queue with three different kinds of tasks to handle the parallel
copying collection:

1. root scanning tasks to discover roots in various JVM data areas.
2. stealing tasks to balance the load among threads
3. a finalizer task to terminate the parallel phase.

These tasks are present in the default ParallelScavenge GC, however we have
modified their behavior to implement topology-awareness as follows. Root scan-
ning threads classify roots according to NUMA nodes and insert the references
into the appropriate local queue. Once a local queue reaches a threshold, the
thread locks the corresponding Arora queue and enqueues all discovered ref-
erences. Stealing threads compete on dequeuing a reference from non-empty
queues. When references in Arora queues are consumed, threads attempt to
acquire work from pending queues of NUMA-local threads. The thread that
acquires the final task performs the parallel phase termination.

Listing 1.1. Topology-aware copying algorithm pseudo code

Task = acqu i r e g c t a s k ( )
switch (Task )
case s c an roo t s :

for ( a l l r o o t a r e a s ){
root = d i s c o v e r r o o t s ( )
node = r e t r i e v e r o o t n od e ( root )
enqueue loca l queue ( root , node )
i f ( queue ( node ) s i z e ()> thre sho ld )

for ( i =0; i<thre sho ld ; i++)
enqueue Arora queue ( root , node )

}
case s t ea l work :

node = get thread node ( )
while ( Arora queue ( node ) != empty){

r e f = dequeue ( node )
f o l l ow ( r e f )
}

while ( NUMA local queue ( node ) != empty){
r e f = dequeue ( )
f o l l ow ( r e f )
}

case f i n a l t a s k :
w a i t u n t i l a l l t h r e a d s t e rm i n a t e ( )
hand contro l to VM thread ( )
end
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3.3 Optimization Schemes

We implement topology awareness for task distribution and work-stealing. How-
ever, retrieving an object’s NUMA-specific location requires an expensive NUMA
system calls. Therefore, we also explore various optimization schemes that pre-
serve rooted sub-graph integrity but may not support locality for task distrib-
ution or work-stealing. Since we are optimizing two parallel techniques, we will
have three optimization schemes, as illustrated in Fig. 1:

Aggressive: GC threads look up an object’s NUMA node at task genera-
tion phase, and only steal references from NUMA-local threads as described
in Sects. 3.1 and 3.2.

Hybrid: GC threads process roots randomly however they steal from sibling
(NUMA-local) queues only.

Relaxed: GC threads process roots randomly and steal work from any queue.

4 Experimental Setup

4.1 System Configuration

We evaluated our work on an AMD Opteron 6366 system. The NUMA topology
consists of eight nodes on four sockets, with 64 cores in total. NUMA nodes
are connected by Hyper-Transport links with transmission speed up to 6 GB/s.
Each node incorporates 64 GB RAM, i.e. 512 GB in total. The 64 cores are
clocked at 1.8 GHz, and the machine runs Linux 3.11.4 64-bit. We set the OS
memory policy to interleaved, which maps the memory pages to each memory
node in a round-robin order. We use OpenJDK 8 for all our experiments. The
‘original’ JVM results use changeset 6698:77f55b2e43ae (jdk8u40-b06). All our
modifications are based on this changeset.

4.2 Benchmarks

We use a variety of memory-intensive workloads to test our topology-aware copy-
ing collector:

Neo4j/LiveJournal: Neo4j is an embedded, disk-based, fully transactional
Java persistence engine that stores data structures in graphs instead of tables
[20]. The graph nodes and relationships are represented in the JVM heap. We
use the LiveJournal social network data set, which consists of around 5 million
nodes and 68 million edges [16]. We have a Java app that embeds Neo4j 2.2.1
as a library and queries the database to find all possible paths between two
randomly selected nodes. The program uses 64 threads to drive the workload
and uses a minimum of 150 GB heap size. The all-paths operation is repeated
twice and the total execution time is reported.
DaCapo 9.12: We run applications from the DaCapo 9.12 benchmark suite
[3] that are compatible with JDK8, namely: avrora, pmd, xalan, sunflow, h2,
lusearch, and jython. The heap size for each program is set close to minimum
and the input size is large.
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SPECjbb2013: SPECjbb2013 [27] is a server business application that mod-
els a world-wide supermarket company. In our experiments, SPECjbb2013
executes the full workload with a heap size of 3 GB.

4.3 Evaluation Metrics

We use three different metrics to evaluate our GC implementation.

NUMA Locality Trace: Since our approach relies on rooted sub-graphs, we
want to summarize quantitatively the NUMA locality of rooted sub-graphs. Our
metric represents the locality richness in each sub-graph. To calculate the per-
centage of NUMA-local objects in a rooted sub-graph, we retrieve the NUMA
node of the root and also the NUMA node of each descending object in the
rooted sub-graph. For all rooted sub-graphs, the locality is recorded in an n-
by-n square matrix, where n represents the number of NUMA nodes. Matrix
element aij records the proportion of objects residing in node j that belong to
a rooted sub-graph with root in node i.

We use the Matrix Trace property from Linear Algebra to calculate the
NUMA locality of a program. The trace of an n-by-n square matrix A is defined
by the sum of the elements on the leading diagonal, i.e.

tr(A) = a11 + a22 + ... + ann =
n∑

i=1

aii 0 ≤ tr(A) ≤ n × 100 (1)

In our system with eight nodes, tr(A) = 800 represents perfect NUMA local-
ity, whereas tr(A) = 0 means that no objects are allocated in the same node as
the root. However, due to the memory allocation policy and program behavior,
some NUMA nodes might not be used at all. Thus we define the relative NUMA
Locality Trace metric such that:

loc(A) =
tr(A)
n × 100

, 0 ≤ loc(A) ≤ 1 (2)

where n is the number of nodes that contain roots.
E.g. a program p uses six nodes for object allocation and tr(p) = 450, thus,

loc(p) = 0.75 and we interpret the result as 75 % of objects are allocated in the
same node as the root.

Application Pause Time and Total Execution Time: We measure and
report the pause time caused by the (stop-the-world) GC and the end-to-end
execution time of the JVM. All timing measurements are taken five times. We
report arithmetic means, and plot 95 % confidence intervals on graphs.

Scalability: We run as many GC threads as the number of cores available
to the system; however large heaps incur a scalability bottleneck. Roots avail-
able in the old generation are discovered by scanning the card table, which is a
data structure used to record old-to-young pointers. As the heap size increases,
the time consumed by scanning the card table grows; hence, we analyze the
responsiveness of our optimization schemes to the increased heap size.
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5 Evaluation

5.1 NUMA Locality Trace

Figure 2a shows the relative NUMA Locality Trace, see Sect. 4.3. For Neo4j/ Live-
Journal, we are unable to process all the data collected due to the huge size;
however, we use the data from the fifth GC cycle only as a sample of the applica-
tion’s GC phase. DaCapo/Sunflow obtains the best relative NUMA locality trace
results. Approximately, 90 % of objects are co-located in the same node as the
root. On the contrary, objects in DaCapo/h2 are dispersed across NUMA nodes
and rooted sub-graphs provide low locality traces: 42 %. For all benchmarks, the
relative NUMA locality trace is 53 % on average. These results differ from our ear-
lier empirical study [1], which demonstrated higher locality. The main difference is
that we now examine rooted sub-graphs from the young generation in our samples.
This may suggest that we cannot rely on the locality features of rooted sub-graphs
to optimize the copying GC. However the following experiment gives more insight
on rooted sub-graph locality for different kinds of roots.
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Fig. 2. (a) Relative NUMA Locality Traces for evaluated benchmarks. On average, 50 %
of objects are local within rooted sub-graphs. (b) Relative NUMA Locality Traces for
various root types: old-to-young, thread stacks, and class loader roots. An old-to-young
rooted sub-graph exhibits relatively low locality.

Recall that at the start of parallel GC, various root scanning tasks are
inserted in shared queues. These tasks direct the GC threads to different JVM
data areas which contain potential root references. These areas include mutator
thread-local stacks, card table (for old-to-young references), class loader data,
JNI handlers, etc. We calculate the NUMA Locality Traces for prevalent root
kinds and plot the results in Fig. 2b. For all evaluated benchmarks, the old-to-
young rooted sub-graphs consistently obtain low locality results, whereas other
roots show high locality.

These results suggest that aggressive locality optimization can be applied on
selected root types. In the next section, we show that GC performance increases
when applying locality optimization on all root types except old-to-young refer-
ences. For old-to-young root, we randomly assign root references to any queue.
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5.2 Pause Time and VM Time Analysis

Figures 3 and 4 plot the GC pause time and VM execution time results for the
Java benchmarks. Proposed topology-aware parallel techniques for task distri-
bution and work-stealing outperform the default Hotspot ParallelScavenge GC
(labeled org).

Fig. 3. GC time (i.e. pause time) for our three schemes. For small heaps (e.g. DaCapo
programs), hybrid scheme gives the best results, whereas aggressive scheme is more
effective for apps with larger heaps. (The default JVM is labeled Org.)

For programs with small heap sizes, represented here by DaCapo bench-
marks, we observe that programs take the best advantage from Hybrid scheme.
Hybrid optimization scheme speeds up the GC performance by up to 2.52x and
never degrades it significantly. However, not all DaCapo programs follow the
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same performance trend. For instance, DaCapo/avrora gains 2.5x GC speedup
but the VM performance degrades by 31 %. Avrora simulates a number of appli-
cations running on a grid of micro-controllers. Previous studies [15,24], report
that DaCapo/avrora incorporates extensive inter-thread communications and
the application threads benefit from increased cache capacity. Thus, efforts to
improve locality counteract this cache optimization.

We note that locality is vital to programs that have large heaps. Our approach
improves Neo4j/LiveJournal GC performance by 37 %, 22 %, and 5 % for aggres-
sive, hybrid, and relaxed optimization schemes respectively. With the aggressive
scheme, SPECjbb2013 records improvement in GC and VM performance by 91 %
and 20 % respectively.

Fig. 4. VM time (i.e. end-to-end execution time) for our three schemes. At least one
scheme provides better VM execution time than default (labeled Org) in most cases.
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5.3 Scalability

When the heap size gets large, the copying collector might spend much time
scanning roots for old-to-young references in the card table. Our experience is
that many live objects are discovered through the card table; thus, the card
table scanning accounts for the majority of GC pause time. On heap sizes above
100 GB, we found that card table handling often takes hundreds of seconds.

In this section, we study the scalability of our optimization schemes as the
heap size increases. The experiments were run on Neo4j/LiveJournal with heap
sizes of 100, 150, and 200 GB. Figure 5 shows the GC time and VM time scalabil-
ity results. Ideally, as the heap size increases, the number of GC cycles decreases.
However, the original GC implementation shows a slight increase in the GC time.
We argue that this increase is due to the time consumed by processing the card
table—in particular due to three factors. First, old-to-young rooted sub-graphs
tend to be deep and require time for processing. Second, we have shown in
Sect. 5.1 that such type of roots possess poor locality between objects; hence,
incur significant remote access overhead. Third, deep sub-graphs are suscepti-
ble to work-stealing, thus, object connectivity will be broken and objects are
scattered across NUMA nodes.

Fig. 5. GC (left) and VM (right) time scaling with heap size for Neo4j/LiveJournal.
GC time decreases with heap size for our optimized versions, whereas the original
implementation does not show any scaling.

Our three optimization schemes improve the second and third aspects and
provide better scalability results. Preserving the rooted sub-graph integrity and
enforcing topology awareness on work-stealing scales the GC time substantially.
In fact, relaxed scheme which aims only at processing connected objects as a unit
outperforms the original GC at 200 GB heap size. These results show that large
heap sizes necessitate knowledge of the NUMA architecture to improve memory
access behavior.

For VM scalability, the original JVM implementation provides a steady VM
time over the three heap sizes and is not affected by the GC pause time. Hybrid

adrien.cassagne@inria.fr



202 K. Alnowaiser and J. Singer

and relaxed optimization schemes observe reduction in VM time but moderate
scaling with increased heap size. Aggressive scheme follows the GC result’s trend
and obtains better scalability results.

6 Related Work

Prior work proposes allocating related objects close to each other to provide
locality. Objects are co-allocated based on various criteria including temporal
access patterns [5] and types [25]. Graph traversal order can improve object
locality. Wilson et al. [30] suggest a hierarchical decomposition traversal order.
This involves two different queues: small queues for descendant objects of some
particular object in order to group them in a memory page, and a large queue to
link these small queues. In our algorithm, we use two queues: NUMA queues for
roots and local queues for rooted sub-graphs. Huang et al. [13] attempt to group
frequently accessed fields in hot methods by sampling the program execution.
At GC time, referents of hot fields are copied with their parents.

Thread-local heaps enforce local access to thread-specific objects [2,7,14,
18,28]. New objects are initially allocated in thread-local heaps until they are
referenced by non-local objects. Such objects are promoted to a shared heap.
Zhou and Demsky [32] implement master/slave collector threads and thread-
local heaps. Each slave thread collects its own heap only. Any reference to a
non-local object is sent to the master thread, which communicates with the
appropriate thread to mark it live. In our algorithm, every GC thread is associ-
ated with a particular NUMA node and processes objects in that node only.

NUMA-aware collectors take into account object location before and after
collection time. Tikir and Hollingsworth [29] sample memory accesses and move
objects to the memory node of the thread accessing the object most frequently.
Ogasawara [22] uses the dominant-thread information of each live object, e.g.
thread holding the object lock, to identify the target memory node.

Connected objects in the object graph share various attributes. Hirzel
et al. [12] examine different connectivity patterns with relation to object life-
time. They conclude that connected objects that are reachable only from the
stack are shortlived; whereas, objects that are reachable from globals live for
long time, perhaps immortally. In addition, objects that are connected by point-
ers die at the same time. Alnowaiser [1] studies the locality of connected objects
and reports that the majority of connected objects, which form a sub-graph of
a root, reside in the same memory node as that root.

Parallel GC algorithms aim to keep all cores busy processing the live object
graph. The fundamental technique of task distribution is to create a per-thread
work list that contains a set of tasks accessible by the owner thread. For load
balancing, threads that complete processing their own queues steal tasks from
non-empty queues [8,9,26,31]. However, such processor-centric algorithms do
not consider object locality and may incur additional overhead for processing
distant objects.

Memory-centric parallel GC algorithms take the object location into consid-
eration. The heap is segregated into segments and each GC thread processes one
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or more segments. References to local objects in each segment are processed,
whereas references to remote objects are pushed into a queue of the correspond-
ing segment [4]. Alternatively, Shuf et al. [25] push references to remote objects
into a shared queue enabling other threads to process them. For load balancing,
GC threads need to lock unprocessed queues to trace live objects [21]. However,
a memory segment boundary might not match the physical memory page size
nor it is assigned to local threads; therefore, further locality improvements are
required.

Work-stealing algorithms negatively affect object locality by separating child
objects from their parents. Gidra et al. [10] remarks that disabling work-stealing
improves program performance for some applications. Muddukrishna et al. [19]
suggest a locality-aware work-stealing algorithm, which calculates the distance
between NUMA nodes in a system with multi-hop memory hierarchy. An idle
thread on a node attempts to steal work from the ‘nearest’ non-empty queues.
Olivier et al. [23] propose a hierarchical work-stealing algorithm to improve local-
ity. They enable one third of running threads to steal work on behalf of other
threads in the same chip and push stolen work into a shared queue for local
threads. Our approach allows threads to steal from local threads only, to pre-
serve NUMA locality.

7 Conclusion

We have shown that a NUMA topology-aware copying GC based on per-node
reference queues is able to preserve much of the rooted sub-graph locality that
is inherent from mutator allocation patterns. Our improved copying GC has
significant benefits—with improvements in GC performance up to 2.5x speedup
and up to 37 % faster application runtime for non-trivial Java benchmarks.

We argue that further improvements are possible based on not only preserv-
ing locality of reference sub-graphs in single NUMA nodes, but also using local
GC threads to operate on these sub-graphs. At present, we rely on expensive
system calls to identify local work for GC threads—but cheaper techniques are
presented in recent literature [11].

In summary, GC implementations should attempt to preserve intra-node
reference graph locality as much as possible, to enable subsequent low-latency
access times for both mutator and collector threads.
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Abstract. High performance programming using explicit communica-
tion calls needs considerable programming expertise to optimize. Tuning
for performance often involves using asynchronous calls, running the risk
of introducing bugs and making the program harder to debug. Techniques
to prove desirable program properties, such as deadlock freedom, invari-
ably incur significant performance overheads.

We have developed a domain-specific language, embedded in C++,
called Kanor that enables programmers to specify the communication
declaratively in the Bulk Synchronous Parallel (BSP) style. Deadlock
freedom is guaranteed for well-formed Kanor programs. We start with
operational semantics for a subset of Kanor and prove deadlock freedom
and determinism properties based on those semantics. We then show
how the declarative nature of Kanor allows us to detect and optimize
communication patterns.

1 Introduction

Writing efficient parallel programs continues to be a challenge for the program-
ming community. Large-scale parallel programs are usually coded using the par-
titioned address space model in which processes communicate by sending explicit
messages using a standardized Message Passing Interface (MPI) library, which
provides a highly portable interface.

Unfortunately, the most straightforward way to specify communication in
MPI is usually not the most efficient. Consequently, MPI has grown to include a
library of communication patterns that are carefully optimized for specific plat-
forms. To enable further optimization MPI also includes asynchronous commu-
nication primitives. Utilizing the asynchronous communication primitives often
involves a deep understanding of how a parallel program works and forces pro-
grammers to compromise readability by strewing communication primitives all
over the unrelated computational code [7]. Moreover, ironically, such optimiza-
tions are highly platform-specific affecting the performance portability of the
MPI code.
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Kanor takes a different approach. It is a domain-specific language (DSL)
that allows programmers to specify communication patterns declaratively, at a
high level, in Bulk Synchronous Parallel (BSP) style [11]. The semantics of the
language are carefully defined to guarantee correctness properties, such as dead-
lock freedom and determinism, while allowing efficient execution. The language
is highly expressive, able to succinctly describe all the existing MPI collective
operations, and allowing users to create their own custom collectives that could
be detected and optimized. The BSP style of Kanor also makes it amenable
to source-level optimizations that are well understood [5], including those that
exploit shared memory for efficient intra-node communication [9].

In this paper we describe a version of Kanor that has been implemented as a
DSL embedded within C++. This allows Kanor to be compiled using standard
C++-11 compilers. Since Kanor uses MPI underneath, existing programs using
MPI can be converted to Kanor incrementally.

Topology topology;

rval[sndr]_at_ root << sval _at_ sndr |

_for_each(sndr, topology.world) &

_if (sndr % 2 == 0) _with toplogy;

Fig. 1. Example of a communication statement.

As an example of a commu-
nication statement consider the
Kanor code in Fig. 1. The state-
ment updates the variable rval
at a Kanor process denoted by
root. Only the processes with
even process IDs send value
stored in the variable sval.

The receiver process set consists of a single process (root) and the sender process
set consists of processes with even IDs, assuming that Topology defines integral
type process IDs. The sender process set is formed with the help of Kanor con-
structs _for_each and _if, and _with specifies the topology. Finally, only the
memory location rval[sndr] is updated with the value receiver from sndr.

As a slightly more realistic example, consider the MPI code in Fig. 2 where
separate reductions are performed by even and odd processes with the sender
processes sending different values. The functions MPI_Isend and MPI_Recv perform
non-blocking send and blocking receive, respectively. This pattern can be written
in other ways in MPI but the code will end up either using send and receive calls
or MPI derived types and subcommunicator manipulations. Even with the new
neighborhood collectives in MPI-3 standard, this pattern cannot be represented
as a single function call. The programmer must also make sure the sent and
received messages match and there is no deadlock. Various MPI implementations
manage the temporary buffers differently so the deadlock bug might show up in
some and not others. Finally, a better algorithm might be implemented with
better knowledge of the communication pattern.

In contrast, in order to express this communication in Kanor, process sets,
messages sizes, and memory locations can all be specified in a single communi-
cation statement. The operation can be viewed as a single parallel assignment
of receiver memory locations by the senders. Kanor constructs are similar to list
comprehensions seen in languages like Python and Haskell. The example com-
munication in Fig. 2 can be expressed in Kanor succinctly, as shown in Fig. 3.
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int rval;

std::vector<int> sbuff;

...

std::vector<MPI_Request> reqs;

int rmdr = me % 2;

for (int i = 0; i < nprocs; i++) {

if (i % 2 == rmdr) {

MPI_Request req;

MPI_Isend(&sbuff[i], 1, MPI_INT, i, 0, MPI_COMM_WORLD, &req);

reqs.push_back(req);

}

}

MPI_Waitall(reqs.size(), reqs.data(), MPI_STATUSES_IGNORE);

for (int i = 0; i < nprocs; i++) {

if (i % 2 == rmdr) {

int r;

MPI_Recv(&r, 1, MPI_INT, i, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

rval += r;

}

}

Fig. 2. Reduction using MPI; even and odd processors perform different reductions.

int rval;

kanor::CommBuff<int> sbuff;

...

Topology t;

rval _at_ rcvr << std::plus<int>() << sbuff[rcvr] _at_ sndr |

_for_each(sndr, t.world) & _for_each(rcvr, t.world) &

_if ((sndr % 2) == (rcvr % 2)) _with t & GLOBAL;

Fig. 3. Reduction is expressed much more concisely and clearly in Kanor.

In the rest of the paper, we describe the language and its semantics and
show how those semantics lead to correctness guarantees. As an embedded DSL
(EDSL), Kanor performs certain just-in-time optimizations at run-time and
caches them to amortize the cost of the optimizations. We report experimen-
tal results that demonstrate that the overhead of Kanor is insignificant for the
benchmarks we studied. This paper makes the following contributions.

– Design of Kanor as a DSL embedded within C++.
– An operational semantics for a subset Kanor and discussion of deadlock free-

dom and determinism properties.
– An approach for detecting collective communication patterns within Kanor.
– Performance evaluation of our collective detection approach.
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2 Kanor Syntax

Figure 4 shows the BNF grammar for Kanor. A communication statement in
Kanor consists of four parts: destination specification, operation, source specifi-
cation, and condition. The operation is bracketed by the literal << and the condi-
tion is preceded by the literal |, which makes the communication statement read
like set comprehension. The destination specification is any valid lvalue in C++
and source specification is any valid rvalue. If the source type is not assignable
to the destination, compilation fails, as would be expected in standard C++.
The operation bracketed by << can be any binary functor, which is applied to
the source and the destination to update the destination. The operation may be
omitted, in which case the operation defaults to identity operation. If specified
the operation is assumed to be associative and commutative. Note that assigning
multiple values to a single destination violates the condition of associativity, in
which case the program’s behavior is undefined.

The condition consists of a clauses separated by the literal &. A _for_each

clause binds a process ID variable, PVar, to a set of process IDs (ProcSet). The
set can be generated with the range Beg to End. An _if clause is used to filter
out certain process IDs from a generated set; Cond is a boolean expression and
may involve the PVars bound with a _for_each. The _let clause assigns a value
Val to a PVar.

In destination and source specifications, Lval refers to an expression that eval-
uates to an lval, Rval to an expression that evaluates to an rval, and ProcIdExpr

to an expression that evaluates to a valid process ID. The _with clause is used to
specify a topology and provide certain hints to Kanor about the communication
(see Sect. 4).

Kanor is sufficiently expressive to encode all the MPI collectives. Commu-
nication characteristics, such as, process sets, message lengths, and destination
addresses can be specified as part of the statement itself. This means that a
communication pattern like the MPI collective MPI_Alltoallv can be encoded in
many ways with a Kanor communication statement. Some of the encodings are
shown in Fig. 5.

CommStmt ::= DstSpec [ << Operation] << SrcSpec | Conditions [WithStmt]
DstSpec ::= Lval at ProcIdExpr
SrcSpec ::= Rval at ProcIdExpr
Conditions ::= Clause [ & Clause]*
Clause ::= ForEach | If | Let | TopoSpec | Hints
ForEach ::= for each(PVar, ProcSet) | for each(PVar, Beg, End)
If ::= if ( Cond )

Let ::= let ( PVar, Val )

WithStmt ::= with Hints [ & TopologyObject] | with TopologyObject
Hints ::= Hint [ & Hint]*
Hint ::= GLOBAL | CORRESPONDING | SENDER | INVARIANT

Fig. 4. Formal syntax of Kanor. A communication statement expressed in Kanor is
represented by the non-terminal, CommStmt.
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All-to-All:

All
Gather

rb[s] _at_ r << sb _at_ s |

_for_each(s, t.world) & _for_each(r, t.world) _with t;

All
Gatherv

rb[Slice(dspls[s],counts[s])] _at_ r <<

sb[Slice(0, counts[s])] _at_ s | ... ;

Reduce
scatter

rb[Slice(0, count[r])] _at_ r << std::plus<btype>()

<< sb[Slice(displ[r], count[r])] _at_ s | ... ;

All-to-One:

Gather rb[Slice(s*blk_sz, blk_sz)] _at_ root

<< sb[Slice(0, blk_sz)] _at_ s | ... ;

Gatherv rb[Slice(displ[s], counts[s])] _at_ root

<< sb[Slice(0, counts[s])] _at_ s | ... ;

Reduce rb _at_ root << kanor::sum<btype> << sb _at_ s | ... ;

One-to-All:

Bcast rb _at_ r << sb _at_ root | ... ;

Scatter rb _at_ r << sb[Slice(r*blk, blk)] _at_ root | ... ;

Scatterv rb _at_ r << sb[Slice(displ[r], counts[r])] _at_ root | ... ;

Other:

Scan rb _at_ r << std::plus<btype>() << sb _at_ s |

_for_each(s, t.world) & _for_each(r, s, t.world.size()) _with t;

Exscan rb _at_ r << std::plus<btype>() << sb _at_ s |

_for_each(s, t.world) & _for_each(r, s+1, t.world.size())_with t;

Fig. 5. MPI collectives encoded in Kanor. In “One-to-All”, blk refers to the size of rb.

Kanor makes extensive use of operator overloading for clean syntax and C++
expression templates [4] for performance. The users only need to include a single
header, kanor.h.

3 Kanor Semantics and Properties

In order to make the language behavior precise we give a big-step operational
semantics for a subset of Kanor. We have chosen to restrict ourselves to a sub-
set of the entire language for space considerations and also to keep the proofs of
determinism and deadlock freedom tractable. We call this restricted language KT .

3.1 Semantics

The syntax for KT is shown in Fig. 6. A KT program consists of a sequence
of commands denoted by c in the table. Traditional control flow constructs
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are represented by the if and while commands. Commands are sequenced with;
(semi-colon): c1; c2 means that c1 is executed before c2. Variables, x, in the lan-
guage represent memory locations that can be updated during execution of the
program. Variables can be updated with the assignment command (:=) and with
the communication command denoted by comm. Expressions can be arithmetic
(aexp) or boolean (bexp).

aexp ::= n | x | a0 ⊕ a1 | me | np
⊕ ::= + | × | −
bexp ::= true | false

| a0 � a1 | b0 � b1 | ¬b
� ::= < | > | ≤ | ≥ | =
� ::= ∧ | ∨
cmd ::= skip | x := a | c0; c1

if b then c1 else c2 |
while b do c | comm

comm ::= x1 @ p1 ← op ← x2 @ p2
where clause∗filter∗

clause ::= foreach(v, s exp)
s exp ::= list(a0, a1, ...) | rep(a0, a1)

range(a0, a1)
filter ::= BExp expression
op ::= reduction op

Fig. 6. Formal syntax of KT .

All KT processes execute the same
program similar to the single process
multiple data (SPMD) model. Each
process has its private memory, called
that process’s store. Each process starts
with its own store with the variables
me and np denoting the process rank
and the total number of processes
respectively. Communication can only
be done with the comm commands.

The operational semantics for KT

consist of local rules (Table 1) and com-
munication rules (Table 2). The local
semantics specify how processes com-
pute values locally. Local process stores
are modified with variable assignment
denoted by the e-assign rule. The
semantics for communication are spec-
ified by the e-comm rule in Table 2.
The communication command can be

thought of as parallel assignment of receiver locations by sender values. The
sender process s evaluates the expressions (p1, x2, p2, foreach(i, ...), ..., pred1, ...)
with the store σ producing an environment ρs (e-sendables). ρs maps the sent
variable (x2) to a value (vs) and also binds the generator-bound variables (i)
to set of process IDs. The set of process IDs is generated after the evaluation
of conditions foreach(i, ...), ..., pred1, .... Only the values of i that evaluate p2
to s are stored in ρs. The operation 
 represents communication of data(ρs)
from senders to receivers. The environment ρr is formed on receiver r, by com-
bining mappings from ρs with pr = r. All the sent variables are distinct from
each other and their mappings are preserved in ρr. Finally, receiver r evaluates
and updates memory location(s) x1 by applying op to received values in the
combined environment ρr ⊕ σ. Application of op is a local computation on the
receiver (e-appop). The environment ρr contains a set of values for x2 received
from different senders. Variable x1 in σ is updated by combining all these values
with operator (op). The updated store is denoted by σ1.
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Table 1. Local semantics in KT .

〈b0 | σ〉 ⇓b t0 〈b1 | σ〉 ⇓b t1

〈b0 � b1 | σ〉 ⇓b t
E-BOP

where t = t0 � t1

〈a0 | σ〉 ⇓a n0 〈a1 | σ〉 ⇓a n1

〈a0 ⊕ a1 | σ〉 ⇓a n
E-AOP

where n = n0 ⊕ n1

〈skip | σ〉 ⇓ σ
E-SKIP

〈a | σ〉 ⇓a n

〈x := a | σ〉 ⇓ σ [x �→ n]
E-ASSIGN

〈c0 | σ〉 ⇓ σ1 〈c1 | σ1〉 ⇓ σ2

〈c0; c1 | σ〉 ⇓ σ2

E-SEQ

σ1 := σ

⎡
⎣x1 �→ op

⎛
⎝σ(x1),

∑
v∈ρ(x2)

v

⎞
⎠

⎤
⎦

〈(x1, op, x2) | ρ ⊕ σ〉 ⇓ σ1

E-APPOP

〈b | σ〉 ⇓b true 〈c1 | σ〉 ⇓ σ1

〈if b then c1 else c2 | σ〉 ⇓ σ1

E-COND-T

〈b | σ〉 ⇓b false 〈c2 | σ〉 ⇓ σ1

〈if b then c1 else c2 | σ〉 ⇓ σ1

E-COND-F

∀s ∈ P, 〈foreach(i, ...), ..., pred1, ...) | σ〉 ⇓s R Rf ⊆ R
〈p2 | σ ⊕ Rf 〉 ⇓s s 〈x2 | σ ⊕ Rf 〉 ⇓s vs ρ′ := ρ [x2 �→ vs, i �→ v2]

〈(p1, x2, p2, foreach(i, ...), ..., pred1, ...) | σ〉 ⇓s ρ′ E-SENDABLES

〈b | σ〉 ⇓b false

〈while b do c | σ〉 ⇓ σ
E-WHILE-F

〈b | σ〉 ⇓b true
〈c | σ〉 ⇓ σ1 〈while b do c | σ1〉 ⇓ σ2

〈while b do c | σ〉 ⇓ σ2

E-WHILE-T

Table 2. Communication semantics in KT .

∀r, s ∈ P, ∃p1s, x2s, p2s 〈(p1s, x2s, p2s, foreach(i, ...), ..., pred1, ...) | σ〉 ⇓s ρs

ρs ⇓r ρr

E-UNION

∀r, s ∈ P, ρs ⇓r ρr 〈(x1, op, x2) | ρr ⊕ σ〉 ⇓r σ1

〈x1@p1 ← op ← x2@p2 where . . . | σ〉 ⇓r σ1

E-COMM

3.2 Properties

We first define what well-formedness means for KT programs. We assume KT

programs are well-formed in the ensuing discussion.

Definition 1. Well-formedness KT programs are said to be well-formed iff

– All processes participating in communication, C, execute C.
– All processes participating in communications, C1 and C2, execute C1 and C2

in the same order.
– There are no local errors, including the application of the reduction operator

and ρs computation.

First two requirements for well-formedness are the same as that for an MPI
collective. The problem of checking well-formedness is undecidable in general.
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Kanor does not provide syntactic support or semantic guarantees to ensure well-
formedness. Well-formedness could be checked in limited cases (global knowl-
edge) by the compiler, but not in general.

Determinism. We would like KT programs to produce the same output on
same inputs. This means that each KT process starting with some initial con-
figuration always ends up with the same final configurations on each run of the
program. We say that KT is deterministic if all programs satisfy this property.
More formally, we say that KT programs are deterministic if and only if for
a given process set P , each process with an initial store σp, p ∈ P , all execu-
tions of the program c satisfy the following property: For each process p ∈ P , if
two executions of c evaluate to final stores σ1 and σ2 then σ1 = σ2. Note that
processes share the same program c but they can have different initial and final
configurations (memory stores denoted by σ).

We divide the proof of determinism into two parts, proving that expression
evaluation is deterministic and that the execution of commands is deterministic.

Lemma 1. KT expression evaluation is deterministic.

– ∀e ∈ AExp,∀σ ∈ Σ,∀n, n′ ∈ Z, 〈e, σ〉 ⇓a n ∧ 〈e, σ〉 ⇓a n′ ⇒ n = n′

– ∀b ∈ BExp,∀σ ∈ Σ,∀t, t′ ∈ B, 〈b, σ〉 ⇓b t ∧ 〈b, σ〉 ⇓b t′ ⇒ t = t′

Proof. By induction on the structure of arithmetic expression e. The base cases
are numeric constants n,me and np. The conclusion follows from reflexivity of
integers. In case e is a variable x, x evaluates to a unique n in a given store σ.
The inductive case (a0 ⊕ a1) follows from the deterministic nature of arithmetic
operations. The proof for boolean expressions is similar.

A potential source of non-determinism is the communication command. The
reduction operator might be non-commutative, e.g. assignment. If such an oper-
ator operates with different values on the same memory location, then the result
might be non-deterministic. In this case, we make the operator application (⇓s

of rule e-appop in Table 2) deterministic by choosing a particular evaluation
order. Also, we assume the network is reliable so that the 
 operator in e-union
always produces the same environment after a union over the sent environments.

In the presence of commands like while, we cannot use induction on the
structure of commands to prove determinism. Instead, we use induction on
derivation trees. A judgement D of the form c ⇓ σ says that the command
evaluates to final configuration σ without errors. The derivation of D starts by
selecting the operational semantics rule (Tables 1 and 2) for which D is the con-
sequent. The derivation then branches out, each branch representing a derivation
for each premise of the selected rule. Derivation along a branch of ends when
a rule with no premise is found. Thus the derivation for D forms a tree with
D at its root. We prove determinism of command evaluation by induction over
derivation trees.
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Lemma 2. KT command evaluation is deterministic. 〈c | σ〉 ⇓ σ1 ∧ 〈c | σ〉 ⇓
σ2 ⇒ σ1 = σ2

Proof. The most interesting case here is the rule e-comm in Table 2. Let D be
the derivation when c evaluates to σ1 and D′ be the derivation when c evaluates
to σ2. Derivation tree for D must have two branches (subderivations) from the
root, one for rule e-union (D1) and other for rule e-appop (D2). At the end of
D1 we should get the store ρ1 and at the end of D2 we should get σ1.
By inversion, since D′ uses the rule e-comm again with two subderivations D′

1

and D′
2 with stores ρ2 and σ2 respectively. By induction hypothesis on D1 with

D′
1, we have ρ1 = ρ2 and by induction hypothesis on D2 with D′

2 and ρ1 = ρ2,
we have σ1 = σ2.

A KT program is a command with initial store. Hence, determinism of KT

programs follows from Lemma 2.

Deadlock Freedom. A message passing program might deadlock when a process
blocks waiting for a message that is never sent. KT programs are deadlock-free
by construction.

Lemma 3. KT programs are deadlock free.
∀c ∈ WC,∀p ∈ P, 〈c | σp〉 ⇓ σ′

p where WC is the set of well-formed KT programs.

Proof. In well-formed KT programs, application of the rule e-appop, is always
successful across all processes. All other commands act locally and do not block,
hence there is no deadlock. The proof follows similar pattern to the determinism
proof. The induction is on the structure of derivations.

4 Optimizing Communication

Having established precise semantics and basic correctness of Kanor, we next
identify opportunities to optimize it. Our core technique is based on inferring
the collective operation at run-time the first time a communication statement is
executed. Subsequent executions of the statement use the previously computed
(cached) inference, which eliminates the overhead of the run-time inference of
the pattern, which can take O(n2) time for n processes.

4.1 Communication Knowledge

In order to understand when and how collective patterns can be detected we need
to define communication knowledge cases, which describe the extent to which
the processes agree on the values of the expressions involved in a communication
statement.

The receiver lval (Lval in DstSpec in Fig. 4) is computed on the receiver.
Similarly, the sender rval is computed on the sender. This is necessary, because
the lval might not make sense on the sender and rval might be meaningless on
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the receiver. However, the process sets—the sets of senders and receivers that
are computed using DstSpec, SrcSpec, and Conditions—need to be computed by
both the senders and the receivers in order for two-way communication to take
place. If the sender and receiver process sets evaluate to exactly the same values
on all the processes we call it the global knowledge case. This is the simplest of
all cases.

It is possible that the receiver sets evaluate to different values on different
processes. In such cases, Kanor assumes the communication to be sender-driven,
i.e., the receiver process sets computed by senders take precedence1. Thus, the
senders know which processes they are sending to, but the receivers may not know
their senders. We call this the sender knowledge case. To illustrate it, suppose
the sender process s computes the sender set Ss and receiver set Rs. The receiver
process r computes the sender set Sr and the receiver set Rr. If r ∈ Rs but s /∈ Sr,
the sender s still sends the message which must be received by r.

Finally, it is possible that the sender and the receiver processes agree on their
corresponding receivers and senders, but other processes might not. Thus, if the
communication statement requires process A to send data to B then both A and
B agree on it, but a third process C might not, although, C knows that it is
not involved in this communication. Such a case, which might be relatively rare
compared to other cases, is called the corresponding knowledge case.

Note that there is no receiver knowledge case, since the communication in
Kanor is sender driven. If sender expression evaluates to different values on
different processes, it is still the senders’ versions that take precedence.

It is possible to detect these cases using compiler analysis, however, that is
beyond the scope of this paper. In this paper we assume that the users provide
appropriate annotations with a communication statement (Hint in Fig. 4) to iden-
tify the knowledge case. For the rest of the discussion we assume global knowledge
case, which is by far the most common. Other cases can also be handled similarly,
but usually require additional communication. Assuming local computations are
error-free, the global case guarantees well-formedness Definition 1. It is left to the
programmer to make sure that non-global Kanor programs are well-formed.

4.2 Communication Invariance

A communication statement whose process set calculation depends on an enclos-
ing loop’s index may use different process sets in each iteration. Thus, certain
aspects of a communication statement might change with each invocation. This
is a property distinct from knowledge case.

We identify three core characteristics of a communication statement: length
of the messages, the contiguity of the data in memory, and the process sets
involved in sending and receiving data. We say that the communication is
invariant if none of the communication characteristics change. Invariance of
communication allows us to cache the communication pattern and reuse it in
later instances of the same communication statement.

1 This is motivated by the fact that one-sided put operations are usually more efficient
than one-sided get operations.
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If a communication statement is both global knowledge case and invariant
then each process can independently infer the communication pattern and cache
it, with the assurance that every other process will make an identical inference.
The communication pattern is inferred using Algorithm 1 and cached for subse-
quent use. Our evaluation (Sect. 6) shows that the inference cost gets amortized
quickly as message size increases.

1 Input: Communication Statement S
2 Output: Set of Collective Calls C

// G is a directed graph, in which vertices are process IDs,

// an edge connects sender to a receiver

3 G = build from S;
4 n = number of vertices in vertex set V(G);
5 if each vertex v in V(G) has degree n then
6 if send and receiver buffers contiguous then
7 C = {Alltoall};
8 else
9 C = {AllGather};

10 return;

// build rooted collectives to be executed independently

11 foreach v in V(G) with no incoming edges do
12 if send and receiver buffers contiguous then
13 C = C ∪ {broadcast};
14 else
15 C = C ∪ {scatter};

Algorithm 1: Algorithm to detect MPI collectives.

5 Implementation Status

We have implemented Kanor as an embedded DSL in C++. We make use of
operator overloading, template meta-programming and certain C++11 features,
such as lambdas, to achieve this. The library will be released in open source.

Kanor process ranks are expressed as members of the kanor::ProcID class.
Arithmetic and comparison operators are overloaded for the ProcID class. Pro-
grammers can use list comprehensions provided by Kanor to bind ProcID vari-
ables to sets. Other entities, including communication buffers and slices, are also
provided as convenient Kanor classes. All communication is implemented using
MPI as the underlying communication mechanism. This allows existing MPI
programs to be converted to Kanor incrementally.

The implementation uses type traits to perform several compile-time checks,
for example, to make sure that the sender and receiver expressions will evaluate
to process IDs, and to make sure that the left hand side (receiver expression) is
a valid lval. In order to implement communication pattern detection, carefully
overloaded operators work together to construct an abstract syntax tree (AST)
out of the communication statement. Once the AST is complete, Algorithm 1

adrien.cassagne@inria.fr



An Embedded DSL for High Performance Declarative Communication 217

is used to infer and cache the pattern as a lambda that can be invoked directly the
next time. With the programmer-supplied hint the library generates optimized
implementation for each knowledge case using expression templates.

6 Experiments

We evaluated the pattern identification and caching mechanism implemented in
the library with several benchmarks. First set of benchmarks consists of well-
known MPI collectives working with different process sets and buffer sizes. Each
collective is executed in a loop. First iteration of the loop incurs detection and
caching overhead. The runtime overhead for subsequent iterations is minimal
compared to actual communication. We also evaluated our system on three other
benchmarks, including one dense matrix kernel, Cholesky and two NAS paral-
lel benchmarks, IS (Integer Sort), and FT (Fourier Transform) [1]. We selected
Cholesky, where the matrix columns are cyclically distributed across proces-
sors, for an example of dense matrix computation with complex communication
patterns. The NAS IS benchmarks models irregular communication seen in typ-
ical N-Body codes. NAS FT represents regular communication on a subset of
processes.

The experiments were conducted on the Big Red II infrastructure at Indiana
University. Big Red II is a Cray XE6/XK7 supercomputer with a hybrid archi-
tecture providing a total of 1,020 compute nodes. It consists of 344 CPU-only
compute nodes, each containing two AMD Opteron 16-core Abu Dhabi x86 64
CPUs and 64 GB of RAM. It also has 676 CPU/GPU compute nodes, each con-
taining one AMD Opteron 16-core Interlagos x86 64 CPU, one NVIDIA Tesla
K20 GPU accelerator with a single Kepler GK110 GPU, and 32 GB of RAM.
Big Red II runs a proprietary variant of Linux called Cray Linux Environment
(CLE).

Micro Benchmarks. Figure 7 shows the results for the collective micro-
benchmarks. Timings for six communication statements representing MPI all-
toall, allreduce, broadcast, scatter, scatterv and gather are shown. The collectives
were run for different message sizes, processors and loop iteration counts. We
only show the results for 32 processors with variable sized messages of double
precision values. Each vertical bar represents total time (in milliseconds) it took
for the communication statement to finish. The bars are shown in groups of
three. First bar shows the time taken by MPI collective. Next two bars show
the time taken by an equivalent Kanor communication statement with caching
enabled and disabled respectively. To enable caching, we provide the INVARIANT

hint. With caching disabled (third bar in a group), the runtime incurs pattern
detection overheads on each iteration. With caching enabled (second bar), the
runtime incurs overheads related to the caching mechanism only. The pattern
detection overheads (third bar) are considerable for small messages sizes and all-
to-all patterns. Detection starts to match MPI for larger sizes. Kanor collectives
with caching enabled, start to match MPI even for smaller message sizes.
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Fig. 7. Comparing Kanor implementations of MPI collectives to their counterparts for
32 processes.
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Fig. 8. Cholesky: Kanor vs MPI.

Application Benchmarks. The com-
parison results for Cholesky are shown
in Fig. 8. In our implementation, the
matrix columns are cyclically distrib-
uted and the main computation loop
is strip-mined. A process operates on a
block it owns and broadcasts the calcu-
lated column to downstream processes
that require it. The message lengths
may vary hence this is not an invariant
communication statement. The compu-
tation time dominates the communica-
tion time so the detection overheads
do not cause significant performance
degradation.

Figure 9 shows the results of the NAS Integer Sort (IS) and Fourier Trans-
form (FT) benchmarks. The benchmarks were run for classes S, W, A, B and
C. IS processes send variable number of keys to other processes and the num-
ber of keys are not known a-priori. So an alltoall exchange happens to let the
receivers of the number of keys they are receiving. Next an alltoallv actually
sends the keys. The second alltoallv sends variable length messages, hence it is
not an invariant communication. The detection and caching overhead shows up
for smaller problem sizes (S, W). For larger sizes, the computation and commu-
nication time hides this overhead. Finally, FT is regular alltoall communication
on a subset of processes and it is also invariant. Consequently, Kanor begins to
match MPI even for smaller problem sizes.

adrien.cassagne@inria.fr



An Embedded DSL for High Performance Declarative Communication 219

100

101

102

103

IS

Sx16 Sx64 Wx16 Wx64 Ax16 Ax64 Bx16 Bx64 Cx16 Cx64
101

103

105

CLASSxPROCS

FT

T
im

e
(m

il
li
se

co
n
d
s)

MPI Kanor

Fig. 9. Comparison of Kanor to MPI implementations of NAS Benchmarks Integer
Sort (IS) and Fourier Transform (FT). NAS Benchmark class (S, W, A, B, C) denotes
the size of the problem to be solved. Procs denote the number of processes used to
solve the problem.

7 Related Work

Kanor’s operational semantics were described in a previous paper [3]. This paper
treats communication as parallel assignment, simplifying reasoning. Callahan et
al. [2] detail small-step operational semantics for the BSPLib library. Gava et al. [6]
give big-step operational semantics for a subset of BSPLib. Kanor communication
statements are treated as parallel assignments in our approach. We do not work
or reason with message queues which simplifies the semantics a lot.

Using expression templates [4] helps us pattern match AST nodes at compile
time and inline code based on the match. This is in contrast to other embedding
technique, used for example in Halide [10], that identifies AST nodes by casting
pointers. New features provided in C++11 such as static_assert help us provide
useful error messages in case the communication statement is ill-formed.

Collective detection efforts in MPI have mostly focused on analyzing traces
of programs and detect patterns in them. Hoefler et al. [8] present an online
algorithm to detect collective patterns in codes with point to point messages.
Kanor communication statements enable easier detection of collectives. Also, we
can detect reductions like allreduce.

8 Conclusion and Future Work

Declarative nature of Kanor allows programmers to write complex communica-
tion patterns including but not limited to MPI collectives. Well-formed Kanor
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programs are deadlock-free and deterministic. Kanor can identify and opti-
mize communication patterns without expensive compiler analyses in the pres-
ence of global knowledge. We are currently focusing on implementing compiler
analyses to automatically deduct hints as well as overlap computations with
communication.
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Abstract. We present a novel parallel approach, parallel nearest neigh-
bor unit (PNNU), for finding the nearest member in a learned dictio-
nary of high-dimensional features. This is a computation fundamental
to machine learning and data analytics algorithms such as sparse cod-
ing for feature extraction. PNNU achieves high performance by using
three techniques: (1) PNNU employs a novel fast table look up scheme
to identify a small number of atoms as candidates from which the nearest
neighbor of a query data vector can be found; (2) PNNU reduces compu-
tation cost by working with candidate atoms of reduced dimensionality;
and (3) PNNU performs computations in parallel over multiple cores
with low inter-core communication overheads. Based on efficient com-
putation via techniques (1) and (2), technique (3) attains further speed
up via parallel processing. We have implemented PNNU on multi-core
machines. We demonstrate its superior performance on three application
tasks in signal processing and computer vision. For an action recogni-
tion task, PNNU achieves 41x overall performance gains on a 16-core
compute server against a conventional serial implementation of nearest
neighbor computation. Our PNNU software is available online as open
source.

Keywords: Nearest neighbor · NNU · PNNU · Data analytics · Sparse
coding · Learned dictionary · Parallel processing · Multi-core program-
ming · Speedup · Matching pursuit · Signal processing · Computer
vision · KTH · CIFAR

1 Introduction

In the era of big data, the need for high-performance solutions to support data-
driven modeling and prediction has never been greater. In this paper, we consider
parallel solutions to the nearest neighbor (NN) problem: given a set of data points
and a query point in a high-dimensional vector space, find the data point that is
nearest to the query point. NN is used in many data applications. For example,
NN (or its extension of finding k nearest neighbors, kNN) is used to identify
best-matched patterns in a set of templates [13]. NN also serves as an inner loop
in popular feature-extraction algorithms such as matching pursuit (MP) [11] and
orthogonal matching pursuit (OMP) [19].
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-29778-1 14
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A key operation in NN is the vector dot-product computation which com-
putes the “closeness” of two vectors under cosine similarity. Exhaustive search
of data points to find the largest dot-product value with the query point can
quickly become prohibitively expensive as data size and dimensionality increase.

Developing efficient NN solutions for general data sets is known to be a
challenging task. There is a vast amount of literature on this topic, including
k-d trees [21], locality sensitive hashing [3], and nearest-neighbor methods in
machine learning and computer vision [18]. For high-dimensional data, most
methods in the literature usually do not outperform exhaustive NN search [6].
This is due to the fact that, in practical applications, the high-dimensional data
space is commonly only sparsely populated. In our experiments, we find that
this observation often holds for even a moderate dimensionality, such as 30.

In this paper, we consider parallel computing approaches to NN for applica-
tions in machine learning and data analytics. Particularly, we consider the prob-
lem of finding the nearest neighbor in a dictionary of atoms (features) learned
from training data. We present a novel parallel scheme, parallel nearest neigh-
bor unit (PNNU), offering a high-performance NN solution to this problem. By
exploiting data characteristics associated with a learned dictionary, such as the
dominance of a small number of principal components, PNNU realizes its high
performance with three techniques:

T1. reducing the number of required dot-product computations,
T2. reducing the dimensionality in each dot-product computation, and
T3. parallel processing with low inter-core communication overheads.

For T1, we use a fast table look up scheme to identify a small subset of
dictionary atoms as candidates. By carrying out dot-product computations only
with these candidates, the query vector can quickly find its nearest neighbor
or a close approximation. Our look-up tables are based on principal component
analysis (PCA). For accurate candidates identification, we apply PCA to dictio-
nary atoms rather than the original data set from which the dictionary is learned.
The construction and usage of this fast table look up scheme is novel. For T2, we
apply the same PCA technique to reduce dimensionality of the candidate atoms
to lower the cost of computing their dot-products with the query vector. Finally,
for T3, we show that multiple cores can each work on scalar projections of dic-
tionary atoms on their respective dimensions independently without inter-core
communication until the very end of the PNNU computation. At the very end, a
simple and inexpensive reduction operation among multiple cores is carried out.
The parallel processing enabled by T3 results in substantial speed-up gains on
the already efficient computation brought by T1 and T2. Thus, PNNU does not
suffer from a common drawback in parallel processing that good speedups are
obtained only on more parallelizable but less efficient computations. We have
implemented PNNU with these techniques in software for multicore computers,
and our code is available as open source for public research use [10]. PNNU is
written in C++ and contains language bindings and examples for Python and
MATLAB making it simple to integrate into existing codebases.
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2 Background: Learned Dictionaries and Spare Coding

A data-driven modeling and prediction task, such as those considered in this
paper, generally involves two phases. The first phase is feature extraction, where
we use clustering methods such as K-means and K-SVD [1] to learn a dictionary
where atoms (features) are cluster centroids. These atoms are the most occurring,
representative features of the data. The second phase is classification/regression,
where we compute a sparse representation, via sparse coding, of an input data
vector in the learned dictionary, and then based on the sparse representation
perform classification/regression.

Mathematically, sparse coding is an optimization problem expressed as

ŷ = arg min
y

‖x − Dy‖22 + λ · ψ(y), (1)

where x is an input data vector, D is a learned dictionary, ŷ is an sparse repre-
sentation of x, λ is certain constant and ψ(y) is a sparsity constraint function.
The choices of ψ(y) are usually either the L0-norm ‖y‖0 or the L1-norm ‖y‖1.

Algorithms for sparse coding include those such as MP and OMP which
greedily perform minimization under a L0-norm constraint, and those such as
Basis Pursuit [2] and LARS [4] which perform minimization under a L1-norm
constraint.

The inner loop in these algorithms is the NN problem for a learned dictio-
nary: for a given input vector x ∈ R

m, find its nearest feature (atom) dj in a
m × n dictionary D =

[
d1 d2 . . . dn

]
. In machine learning and data analytics

applications, D is generally overcomplete with m � n, and that m and n can
be large, e.g., m = 100 and n = 4000. In these cases, sparse coding is computa-
tionally demanding. The PNNU approach of this paper aims at alleviating this
computational problem.

Convolutional neural networks (CNN) and convolutional sparse coding (CSC)
have become popular due to their success in many machine learning tasks [9,12].
Interestingly, PNNU can help accelerate CSC. Convolution in CNN with Fast
Fourier Transform has a complexity of O(nm log(m)) as compared to O(nm2)
for CSC. With PNNU, CSC’s complexity cost is reduced to O(αβm2) with a
penalty to accuracy, for small α and β, which is discussed in detail in Sect. 5.

3 Parallel Nearest Neighbor Unit (PNNU)

In this section, we describe parallel nearest neighbor unit (PNNU) for a learned
dictionary D. The three subsections describe three techniques that make up the
PNNU algorithm. The first technique T1 uses the Nearest Neighbor Unit (NNU)
to reduce the number of dot-product computations. The second technique T2
reduces the cost of each dot-product computation via dimensionality reduction.
The third technique T3 parallelizes NNU. These three techniques work in con-
junction for high-performance nearest neighbor computation. That is, the first
two techniques improves computation efficiency by reducing total cost of dot-
product computations while the last technique further reduces the processing
time via parallel processing.
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3.1 Technique T1 (NNU): Identification of Candidates for Reducing
Dot-Product Computations

Technique T1 concerns a novel table look-up method for identifying a small
number of candidate atoms in D from which the nearest neighbor of a query
data vector or a close approximation can be found. We call this the nearest
neighbor unit or NNU. As Fig. 1 depicts, the naive exhaustive search involves
O(n) dot-product computations while NNU’s candidate approach reduces this
number to O(m). This saving is significant for overcomplete dictionaries with
m � n. As described below, the technique is divided into two steps: offline table
preparation and online candidates identification.

Fig. 1. A contrast between the naive
exhaustive search and the NNU’s can-
didates approach in the number of
dot-product computations. The k can-
didates are a subset of D which are
selected by NNU. Increasing the α
and β parameters in NNU increases k,
where k ≤ α · β.

Fig. 2. Offline table preparation of
content for TABLE-i associated with
the top principal component vi of D
for i = 1, 2, . . . , α. For each possible
w-bit value W for vT

i x the dictionary
positions of the β atoms for which their
scalar projections on vi are nearest to
W are stored at table location W .

NNULookup Table Preparation. We first compute principal components V
for D by performing PCA [7] on D, that is, DDT = VΣVT for a diagonal Σ.
We then form a sub-matrix Vα of V by including the top α principal components
for some α = O(m), which together explain the majority of data variations in
D, that is, VT

α =
[
vT
1 ,vT

2 , . . . ,vT
m

]T .
Based on D and Vα, we prepare content for α tables using VT

αD. As depicted
in Fig. 2, for TABLE-i corresponding to vi, i = 1, . . . , α, we map each possible
w-bit value of vT

i x to the dictionary positions of the β atoms dj , for which vT
i dj

are nearest to the vT
i x value.

To contain the table size, we aim for a small bit width w in representing
vT

i x. Specifically, we use the 16-bit IEEE 754 half-precision floating-point data
type for all of our experimental results. Empirically, we have found that for many
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practical applications such as object classification for tens or hundreds of classes,
w = 16 is sufficient. In this case, the tables can be easily fit in the main memory
or even the L3 cache (4–8 MB) of today’s laptops. However, this is no inherent
restriction on the data type stored in the table and w can be increased when
higher precision is required.

Note that our use of PCA here departs from the conventional application of
PCA where principal components are computed from the raw data set, rather
than the dictionary learned from this data set. Since dictionary atoms are cluster
centroids learned by clustering methods such as K-means, they are denoised
representation of the data. As a result, when PCA is applied to dictionary atoms,
a smaller percentage of principal components can capture most of variations in
the data, as compared to PCA applied to the raw data directly. This is illustrated
by Fig. 3. The top 10 eigenvalues of the learned dictionary explain over 80.7 % of
the variance, compared to 49.3 % for the raw data. Moreover, as shown in Table 1,
NNU with applying PCA on a learned dictionary rather than the raw data gives
results of substantially higher accuracy for an action recognition task. The use
of PCA in this way, using the projection between Vα and an input vector x to
build a fast look up table, is novel and one of the largest contributions of this
paper. (We note a similar use of PCA in [5] for a different purpose of preserving
pairwise dot products of sparse code under dimensionality reduction).

NNULookup Algorithm. Given an input vector x we are interested in find-
ing its nearest atom in D. We first prepare search keys for x, that is, VT

αx =[
vT
1 x,vT

2 x, . . .vT
mx

]T
. Next, for i = 1, 2, . . . , α, we use a w-bit representation of

vT
i x as a key into TABLE-i, as depicted in Fig. 4. Note that these α table look

Fig. 3. Cumulative variance explained by
PCA applied to the learned dictionary
and raw input data for the action recog-
nition task described in Sect. 5.1. The
eigenvalues are sorted by magnitude and
cumulatively summed to show total
explained variance.

Table 1. Accuracy results of PNNU(α,β),
for different α and β configurations, for
the action recognition task described in
Sect. 5.1 when applying PCA on a learned
dictionary (PCA-D) versus applying PCA
on the raw data (PCA-X).

PCA-X PCA-D

PNNU(1,1) 64.20 % 82.70 %

PNNU(1,5) 79.20 % 87.30 %

PNNU(1,10) 80.30 % 89.60 %

PNNU(5,1) 78.60 % 87.90 %

PNNU(5,5) 83.20 % 92.50 %

PNNU(5,10) 86.70 % 90.80 %

PNNU(10,1) 79.80 % 86.70 %

PNNU(10,5) 87.30 % 90.20 %

PNNU(10,10) 89.00 % 90.80 %
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ups can be done independently in parallel, enabling straightforward paralleliza-
tion (see Sect. 3.3). Finally, we identify candidates for the nearest neighbor of x
by taking the union of the results from all α tables as illustrated in Fig. 5 for
α = 3. Note that taking a union with the “OR” operator is amenable to efficient
hardware and software implementations.

For a given α and β, our table-lookup method will yield at most αβ can-
didates. Increasing α and β will raise the probability that identified candidate
atoms will include the nearest neighbor. In Sect. 4 we show that this probabil-
ity approaches 1 as α and β increase. Since tables can be accessed in parallel
(see Sect. 3.3 for PNNU), increasing α does not incur additional look up time
beyond the final low-cost reduction step. Additionally, since each look up pro-
duces β neighbors at the same time from each table, increasing β does not incur
additional look up time beyond the cost of outputting β values for the union
operation of Fig. 5.

Fig. 4. Online retrieval of content from
tables.

Fig. 5. The union operation: pooling
results from 3 tables with the “OR”
operator.

3.2 Technique T2: Dimension Reduction for Minimizing the Cost
of Each Dot-Product Computation

By technique T1, we can identify a set of candidate atoms that have a high
likelihood of containing the nearest neighbor of an input vector x. Among these
candidate atoms, we will find the closest one to x. The straightforward approach
is to compute the dot product between x and each candidate atom. In this
subsection, we describe technique T2 based on dimension reduction using the
same PCA on D as in technique T1, now for the purpose of lowering the cost
of each dot-product computation. For example, suppose that the original atoms
are of dimensionality 500, and after PCA we keep only their scalar projections
onto the top 10 principal components. Then a dot-product computation would
now incur only 10 multiplications and 9 additions, rather than the original 500
multiplications and 499 additions. Note that it is also possible to apply PCA
on raw data X, but applying PCA on D is more natural to our approach, and
produces superior results on application accuracy as we demonstrate in Sect. 5.

Since PCA dimensionality reduction is a lossy operation, it is inevitable that
dot-products over reduced-dimension vectors will lower the accuracy of the
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application result. In practice, we keep the top principal components whose
eigenvalues can contribute to over 80 % of the total for all eigenvalues. In this
case, as results in Sect. 5 demonstrate, the impact on accuracy loss is expected
to be acceptable for typical applications we are interested in.

Note that in the preceding subsection, we use PCA to identify candidates. In
this subsection, we use the same PCA to reduce dimensionality. These are two
different usages of PCA. The former usage is novel in its role of supporting fast
table look up for NNU, while the latter usage is conventional.

3.3 Technique T3: Parallel Processing with Low Inter-core
Communication Overheads

This subsection describes the third technique making up PNNU. The NNU algo-
rithm of technique T1 leads naturally to parallel processing. We can perform
table-lookup operations for α dimensions in parallel on a multi-core machine.
That is, for i = 1, 2, . . . , α, core i performs the following operations for an input
data vector x: (1) compute vT

i x, (2) look up β values from table i based on
vT

i x, (3) compute β dot-product computations or reduced-dimension dot-
product computations between the candidate dictionary atoms and x, and
(4) output the candidate atom which yields the maximum dot-product value
on the ith dimension.

The final reduction step is performed across all cores (dimensions) to find
the dictionary atom which yields the maximum dot-product value. We note
that the table look-ups from multiple tables are carried out in parallel, so are
the corresponding dot-product computations or reduced-dimension dot-product
computations. We also note that this parallel scheme incurs little to no inter-core
communication overhead, except at the final reduction step where α candidate
atoms are reduced to a single atom that has the maximum dot-product value
with x. In Sect. 5, experiments show that this low communication overhead leads
to large parallel speedups.

4 Probabilistic Analysis of PNNU

In this section, we analyze the probability P that for a given query vector
x, the PNNU algorithm finds the nearest neighbor d in a dictionary D. Let
v1,v2, . . . ,vα be the α top principal components of D. We show that the prob-
ability P approaches 1 as α and β increase, satisfying a certain condition.

For a given ε ∈ (0, 1), let βi be the least number of the nearest neighbors of
vT

i x such that the probability that vT
i d is not any of the βi nearest neighbors

of vT
i x is less than or equal to ε. Given an α, for i = 1, . . . , α, let Yi be an event

that vT
i d is not any of the β nearest neighbors of vT

i x, where β = max1≤i≤α βi.
Therefore, Pr(Yi) ≤ ε. Assume that Yi are mutually independent. Then, we have
P = 1 − Pr

(⋂α
i=1 Yi

)
= 1 − ∏α

i=1 Pr(Yi) ≥ 1 − εα. Thus, as α increases, and
also β increases accordingly, εα decreases toward 0 and P approaches 1.

Consider using the parallel processing T3 technique of PNNU. Since we have
low inter-core communication overheads, increasing α (the number of cores)
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does not impact the processing time significantly. Therefore, for a particular
application, we can pick an ε and keep increasing α, and also β accordingly,
until the probability Pr(A) is high enough.

To simplify the analysis, we have assumed that Yi are mutually independent.
Experimentally, we have found that this assumption holds well. For all exper-
iments reported in this paper, Pr

( ⋂α
i=1 Yi

)
and

∏α
i=1 Pr(Yi) are reasonably

close empirically. For example, in one experiment, these two numbers are 0.72
and 0.71 and in another experiment, they are 0.47 and 0.45.

5 Experimental Results of PNNU on Three Applications

In this section, we provide empirical performance results for PNNU on three
applications: action recognition, object classification and image denoising. All
three applications require the nearest neighbor computation. We replace the
nearest neighbor computation with PNNU(α,β), where α, β denote different
parameter configurations of PNNU. All experiments are run on a compute server
using two Intel Xeon E5-2680 CPUs, with a total of 16 physical cores.

Algorithms to Compare. We consider both PNNU and PNNU without tech-
nique T2 (PNNU-no-T2). The latter involves more dot-product computations,
but yields better application accuracy. We compare PNNU and PNNU-no-T2
(both serial and parallel implementations) with three other algorithms:

1. Straightforward method (S). This is the straightforward exhaustive search
algorithm to find the nearest neighbor in terms of the cosine distance. If the
input data vector is x and candidate atoms are the columns of D, we compute
DTx. We call its serial implementation S. This method is the only algorithm
in the comparison that is guaranteed to find the nearest neighbor of x in D.

2. PCA-dimensional-reduction-on-dictionary (PCAonD(α)). For dimensionality
reduction, we first perform PCA on D to get its top α principal components
VT

D, that is, DDT = VDΣVD
T for some diagonal Σ. Then during computa-

tion, instead of computing DTx, we compute dot products (VT
DD)T (VT

Dx) of
reduced dimensionality. Note the parameter α specifies dimensionality of dot-
product computations after PCA dimension reduction. In these experiments,
we use α = 10.

3. PCA-dimensional-reduction-on-data (PCAonX(α)). This is the same as the
previous algorithm, but instead we compute PCA on the input data X. Let
VT

X contain the top α principal components. We compute (VT
XD)T (VT

Xx).
Note the parameter α specifies the dimensionality of dot-product computa-
tions after PCA dimension reduction. We use α = 10.

Performance Measures. We compare algorithms in terms of the following per-
formance related measures, where an algorithm Y can be S, PCAonD, PCAonX,
PNNU or PNNU-no-T2:
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N: The number of arithmetic operations per query vector. This is the number
of addition and multiplication operations each algorithm performs for a sin-
gle query vector. For S, a dot-product between a query vector x ∈ R

m and a
dictionary D ∈ R

m×n incurs n(2m − 1) arithmetic operations (nm for the mul-
tiplication and n(m−1) for the addition). For PCAonD(α) and PCAonX(α), it
is n(2α − 1). For PNNU(α,β), it is bounded above by αβ(2α − 1). For PNNU-
no-T2(α,β), it is bounded above by αβ(2m − 1).
G: Efficiency gain. For an algorithm Y, its efficiency gain is the number of arith-
metic operations of the straightforward method (NS) over that of the algorithm
Y (NY): NS/NY.
Ts: Serial processing wall clock time in seconds. This is the time it takes for the
serial implementation of the algorithm to run.
Us: Serial speedup of an algorithm Y over the serial straightforward method. It
is the wall clock serial execution time of the straightforward method over that of
algorithm Y: TsS/TsY . This is a run-time realization of the theoretical efficiency
gain G.
Tp: Parallel processing wall clock time in seconds. This is the time it takes for
the parallel implementation of the algorithm to run.
Up: Parallel-over-serial speedup. This is the parallel scaling performance of the
algorithm. It is Ts/Tp.
Ut: Total performance gain of an algorithm Y over the serial implementation
of the straightforward method: TsS/TpY = Us × Up.
Q: Quality metric which is defined per application. For action recognition and
object classification, we report the recognition/classification accuracy on the
test set, i.e., the percentage of times the algorithm predicts the correct class
labels. For image denoising, we report the peak signal-to-noise ratio (PSNR).

Performance Highlights. For each application, we will highlight the following
points in our performance analysis:

1. A comparison of how PNNU performs compared to the simple PCA methods
(PCAonX and PCAonD).

2. The algorithm and setting with the best quality metric (Q) compared to the
straightforward method.

3. The algorithm and setting with the best total performance gain (Ut).

In the following we will explicitly mention these highlighted points for each
application, and mark them with bold faces in the tables which report experiment
results.

5.1 Application A1: Action Recognition

For the action recognition task we use a standard benchmark dataset, the KTH
dataset [17], which is a video dataset consisting of 25 subjects where in each
video a single subject is performing one of six actions (walking, jogging, running,
boxing, hand waving and hand clapping). The dataset is split on subjects into
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a training and testing set. Features are extracted from each video using the
same method as described in [20]. Features from each video consist of a variable
number of columns, where each column is a 150-long feature vector. K-means is
then performed on the training set to learn a dictionary of size 1000. Finally, each
column from every video is then encoded with the learned dictionary using either
conventional dot product or our PNNU approach. Each column is given a single
atom assignment, and for a given video these column assignments are aggregated
using a bag-of-words model. An SVM classifier with chi-squared kernel is then
trained on the bag-of-words representation in order to obtain prediction results.

Table 2. The experiment results for the KTH dataset.

Algorithm N G Ts Us Tp Up Ut Q

S 299,000 1 692.89 1.00 108.48 6.39 6.39 94.20%

PCAonX(10) 19,000 16 129.25 5.36 13.15 9.83 52.69 77.50%

PCAonD(10) 19,000 16 128.40 5.40 13.24 9.70 52.34 77.50%

PNNU-no-T2(1,1) 299 1,000 7.39 93.75 9.80 0.75 70.71 82.70%

PNNU-no-T2(1,10) 2,990 100 28.80 24.06 20.41 1.41 33.94 89.60%

PNNU-no-T2(5,1) 1,495 200 22.91 30.24 12.44 1.84 55.71 87.90%

PNNU-no-T2(5,5) 7,475 40 75.30 9.20 16.73 4.50 41.41 92.50%

PNNU-no-T2(5,10) 14,950 20 140.23 4.94 22.90 6.12 30.26 90.80%

PNNU-no-T2(10,1) 2,990 100 19.24 36.01 10.44 1.84 66.35 86.70%

PNNU-no-T2(10,10) 29,900 10 260.30 2.66 24.99 10.42 27.73 90.80%

PNNU(1,1) 1 299,000 6.36 108.96 5.73 1.11 120.95 82.70%

PNNU(1,10) 10 29,900 15.75 43.99 6.91 2.28 100.29 78.00%

PNNU(5,1) 45 6,644 15.56 44.54 8.05 1.93 86.08 85.50%

PNNU(5,5) 225 1,329 44.64 15.52 8.16 5.47 84.95 83.80%

PNNU(5,10) 450 664 80.87 8.57 8.98 9.01 77.16 84.40%

PNNU(10,1) 190 1,574 27.33 25.35 9.53 2.87 72.69 83.80%

PNNU(10,10) 1,900 157 162.95 4.25 10.69 15.24 64.79 87.30%

Table 2 shows the experiment results for the KTH dataset. The straight-
forward method, denoted as S, achieves the highest accuracy (Q) of 94.20 %.
PCAonX(10) and PCAonD(10) both achieve accuracy (Q) of 77.50 %, which is
in general substantially lower than PNNU configurations. Additionally, many
PNNU configurations are strictly better in terms of both quality (Q) and total
performance gain (Ut).

PNNU-no-T2(5,5) has an accuracy of 92.50 %, the closest to that of S, with
an efficiency gain (G) of 40. This translates into a serial speedup (Us) of 9.20x
(the difference between G and Us is due to both run-time overhead and G only
counting arithmetic operations). The parallel speedup (Up) is 4.50x, for a total
performance gain (Ut) of 41.41x over the serial implementation of S.

Notably, PNNU(1,1) achieves the highest total performance gain (Ut) of
120.95x with accuracy (Q) of 82.70 %. This trade-off is good for applications
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that can accept a small reduction in quality in order to significantly reduce run-
ning time. As expected, PNNU-no-T2 achieves higher accuracy than PNNU at
the expense of increased running time. We note this trend in other applications
as well.

Though in general increasing α and β improves Q, it is not always the case.
For instance, we observe a drop of 1.7 % in Q when going from PNNU-no-T2(5,5)
to PNNU-no-T2(5,10). The reason for this is explained in the following example.
Suppose given an input sample x, the nearest atom to x is d∗. Increasing β from
5 to 10 leads to finding the candidate atom dβ=10 that is nearer to x than the
candidate atom dβ=5. Nonetheless, there is a chance that dβ=10 is further away
from d∗ than dβ=5. This results in the drop in Q. In general, when x is already
close to d∗, this phenomenon is unlikely to happen.

5.2 Matching Pursuit Algorithm with PNNU

The object classification and image denoising tasks rely on computing sparse
codes. Before going into those applications, we introduce MP (Algorithm1), the
sparse coding algorithm that we use to compute sparse representations for these
tasks. We modify the nearest neighbor computation section of MP to use PNNU
and obtain MP-PNNU (Algorithm2). For comparison with other algorithms, we
just replace PNNU routine with other algorithms’ routines of finding the nearest
neighbor.

Algorithm1. MP

1: Input: data vector x, dictionary
D = [di, . . . ,dn], and the number
of iterations L

2: Output: sparse code y
3: r ← x
4: for t = 1 L do
5: i ← arg max |DT r|
6: yi ← dT

i r
7: r ← r − yidi

8: end for

Algorithm2. MP-PNNU

1: Input: data vector x, dictionary
D = [di, . . . ,dn], orthonormal
basis V, the number of iterations
L, and PNNU

2: Output: sparse code y
3: r ← x
4: for t = 1 L do
5: v ← VT r
6: C ← PNNU(v)
7: j ← arg max |CT r|
8: i ← i s.t. di = cj
9: yi ← dT

i r
10: r ← r − yidi

11: end for

The MP algorithm finds the column dj in the dictionary D which is best
aligned with data vector x. Then, the scalar projection yj along this dj direction
is removed from x and the residual r = x−yjdj is obtained. The algorithm pro-
ceeds in each iteration by choosing the next column dj that is best matched with
the residual r until the desired number of iterations is performed. We note that
for each iteration, line 5 is the most costly nearest neighbor step. As we noted
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previously, for a m×n dictionary D, exhaustive search will incur a cost of O(mn)
and thus can become prohibitively expensive when m and n are large. The MP-
PNNU algorithm can mitigate this problem. MP-PNNU has the same overall
structure as MP, except that in finding the best matched column dj , it uses the
PNNU approach as described in Sect. 3.

5.3 Application A2: Object Classification

For the image object classification task we use the CIFAR-10 image dataset [8],
an image dataset of 10 object classes. We randomly select 4,000 images from the
training set and evaluate on 1,000 images from the test set (we ensure that the
same number of samples are selected from each class). For each image, all 6 by
6 3-color-channel (RGB) patches are extracted sliding by one pixel, and there-
fore, each vector is 108 dimension long. We learn a 3,000-atom dictionary using
K-SVD [1], a generalization of K-means, on the training patches. For encoding,
we compare the classic MP (Algorithm 1) with MP-PNNU (Algorithm2), set-
ting k = 5 (number of coefficients) for both algorithms. Finally, we perform a
maximum pooling operation over each image to obtain a feature vector. A linear
SVM classifier is trained on the obtained training set feature vectors and testing
set accuracy results are reported.

Table 3. The experiment results for the CIFAR-10 dataset.

Algorithm N G Ts Us Tp Up Ut Q

S 645,000 1 3,815.89 1.00 890.37 4.29 4.29 51.90%

PCAonX(10) 57,000 11 1,492.36 2.56 187.27 7.97 20.38 30.40%

PCAonD(10) 57,000 11 1,600.88 2.38 185.38 8.64 20.58 33.10%

PNNU-no-T2(1,1) 215 3,000 38.2375 99.79 76.1259 0.50 50.13 33.90%

PNNU-no-T2(1,10) 2,150 300 69.9699 54.54 86.6791 0.81 44.02 41.70%

PNNU-no-T2(5,1) 1,075 600 65.3232 58.42 80.3086 0.81 47.52 40.20%

PNNU-no-T2(5,5) 5,375 120 143.894 26.52 93.466 1.54 40.83 42.30%

PNNU-no-T2(5,10) 10,750 60 241.786 15.78 113.46 2.13 33.63 45.10%

PNNU-no-T2(10,1) 2,150 300 199.547 19.12 153.835 1.30 24.81 39.40%

PNNU-no-T2(10,10) 21,500 30 971.899 3.93 115.558 8.41 33.02 46.60%

PNNU(1,1) 1 645,000 76.8262 49.67 68.934 1.11 55.36 33.10%

PNNU(1,10) 10 64,500 113.847 33.52 72.8819 1.56 52.36 34.10%

PNNU(5,1) 45 14,333 114.627 33.29 65.21 1.76 58.52 37.30%

PNNU(5,5) 225 2,867 227.224 16.79 85.5631 2.66 44.60 37.30%

PNNU(5,10) 450 1,433 367.583 10.38 95.8492 3.84 39.81 36.30%

PNNU(10,1) 190 3,395 165.41 23.07 121.995 1.36 31.28 35.80%

PNNU(10,10) 1,900 5 724.173 5.27 108.528 6.67 35.16 39.10%

Table 3 shows the experiment results for the CIFAR-10 dataset. The straight-
forward method S achieves the highest accuracy (Q) of 51.90 %. (This multi-class
classification task is known to be difficult, so the relatively low 51.90 % achieved
accuracy is expected for a simple algorithm like this [14].) PCAonX(10) and
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PCAonD(10) achieve accuracy of 30.40 % and 33.10 %, respectively. Once again,
we see that many PNNU configurations are strictly better in terms of both qual-
ity (Q) and total performance gain (Ut). PNNU-no-T2(10,10) has an accuracy of
46.60 %, the closest to that of S, with an efficiency gain (G) of 30. This translates
into a serial speedup (Us) of 3.93x, a parallel speedup (Up) of 8.41x, for a total
performance gain (Ut) of 33.02x over the serial implementation of S. PNNU(5,1)
achieves the highest total performance gain (Ut) of 58.52x with accuracy (Q)
of 37.30 %.

Table 4. The experiment results for denoising the Lena image.

Algorithm N G Ts Us Tp Up Ut Q

S 381,000 1 392.92 1.00 39.24 10.01 10.01 32.34

PCAonX(10) 57,000 7 48.27 8.14 13.59 3.55 28.90 31.18

PCAonD(10) 57,000 7 59.23 6.63 16.78 3.53 23.42 31.20

PNNU-no-T2(1,1) 127 3,000 5.98 65.68 5.42 1.10 72.51 25.88

PNNU-no-T2(1,10) 1,270 300 6.79 57.89 8.29 0.82 47.40 27.36

PNNU-no-T2(5,1) 635 600 11.25 34.91 8.66 1.30 45.35 29.05

PNNU-no-T2(5,5) 3,175 120 22.95 17.12 8.06 2.85 48.74 30.95

PNNU-no-T2(5,10) 6,350 60 35.85 10.96 10.47 3.42 37.53 31.58

PNNU-no-T2(10,1) 1,270 300 8.22 47.82 7.55 1.09 52.03 29.84

PNNU-no-T2(10,10) 12,700 30 31.46 12.49 7.53 4.18 52.16 32.19

PNNU(1,1) 1 381,000 4.55 86.33 4.89 0.93 80.34 25.71

PNNU(1,10) 10 38,100 5.64 69.61 5.28 1.07 74.41 25.80

PNNU(5,1) 45 8,467 6.77 58.07 5.42 1.25 72.45 28.71

PNNU(5,5) 225 1,693 11.14 35.28 5.49 2.03 71.60 29.87

PNNU(5,10) 450 847 14.88 26.41 5.68 2.62 69.23 30.17

PNNU(10,1) 190 2,005 6.76 58.11 5.26 1.29 74.75 29.67

PNNU(10,10) 1,900 201 25.96 15.13 5.96 4.36 65.95 31.64

5.4 Application A3: Image Denoising

In the previous subsections, we have shown that PNNU works well for classifica-
tion problems. In this subsection, we showcase its performance at reconstruction,
specifically, removing noise from an image of Lena [15]. First, a noisy version of
the Lena image is generated by adding Gaussian noise with zero mean and stan-
dard deviation 0.1. This noisy image is then patched in the same manner as
described in the previous subsection, using 8 by 8 grayscale patches, creating
64-dimensional vectors. These patches (roughly 250,000) are then used to learn
a dictionary of 3,000 atoms using K-SVD with the number of sparse coefficients
set to 5. The denoising process consists of encoding each patch with either MP
or MP-PNNU. After encoding, each patch is represented as a sparse feature vec-
tor (sparse representation). To recover a denoised version of the input signal,
the dot-product between the sparse vectors and learned dictionary is computed.
Finally, the recovered patches are each averaged over a local area to form the
denoised image. For our quality measure (Q), we report the peak signal-to-noise
ratio (PSNR). A PSNR for a 8-bit per pixel image that is acceptable to human
perception ranges between 20 dB and 40 dB [16].
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Table 4 shows the experiment results for denoising the Lena image. From the
table, we see that S achieves the highest PSNR (Q) of 32.34. PCAonX(10) and
PCAonD(10) achieve similar PSNR of 31.18 and 31.20 respectively. In contrast
with the other two applications, both algorithms perform reasonably well for
this application. PNNU-no-T2(10,10) has PNSR (Q) of 32.19, the closest to
that of S, with a G of 30, translating into a 12.49x speedup (Us). Its parallel
implementation (Up) adds another 4.18x speedup, for a total performance gain
(Ut) of 52.16x. Notably, PNNU(1,1) achieves the highest total performance gain
(Ut) of 80.34x with PSNR (Q) of 25.71. This is good for scenarios where a
rougher denoising result is acceptable for a significant gain in performance.

6 Conclusion

In this paper, we have described how nearest-neighbor (NN) is a key function
for data analytics computations such as sparse coding. To enhance the per-
formance of the NN computation, we have taken three orthogonal techniques:
(T1) reduce the number of required dot-product operations; (T2) lower the cost
of each dot-product computation by reducing dimensionality; and (T3) perform
parallel computations over multiple cores. Noting that the gains from (T1), (T2)
and (T3) complement each other, we have proposed a parallel nearest neighbor
unit (PNNU) algorithm which uses a novel fast table look up, parallelized over
multiple dimensions, to identify a relatively small number of dictionary atoms
as candidates. Only these candidates are used to perform reduced-dimension dot
products. PNNU allows the dot-product computations for these candidates to be
carried out in parallel. As noted in Sect. 3.1, a key to the success of the PNNU
approach is our application of PCA to dictionary atoms, rather than raw data
vectors as in conventional PCA applications. This use of PCA to build a table
lookup for the purpose of identifying the nearest candidate atom is novel.

We have validated the PNNU approach on multi-core computers with sev-
eral application tasks including action recognition, image classification and image
denoising. Substantial total performance gains (e.g., 41x) are achieved by soft-
ware implementations of PNNU without compromising the accuracy required by
the applications.

Other potential applications for PNNU are abundant. For example, large-
scale data-driven deep learning can benefit from reduced dot product require-
ments in its computation. Mobile computing can benefit from speed and energy
efficient implementation of sparse coding resulting from PNNU to allow sophis-
ticated learning on client devices. In the future, we expect to implement PNNU
as a hardware accelerator which can further speed up NN computations. In
addition, we will explore integrated use of PNNU in conjunction with GPU
accelerators.
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Abstract. This paper proposes coarse grain task parallelization for
a earthquake simulation program using Finite Difference Method to
solve the wave equations in 3-D heterogeneous structure or the Ground
Motion Simulator (GMS) on various cc-NUMA servers using IBM, Intel
and Fujitsu multicore processors. The GMS has been developed by the
National Research Institute for Earth Science and Disaster Prevention
(NIED) in Japan. Earthquake wave propagation simulations are impor-
tant numerical applications to save lives through damage predictions of
residential areas by earthquakes. Parallel processing with strong scal-
ing has been required to precisely calculate the simulations quickly. The
proposed method uses the OSCAR compiler for exploiting coarse grain
task parallelism efficiently to get scalable speed-ups with strong scaling.
The OSCAR compiler can analyze data dependence and control depen-
dence among coarse grain tasks, such as subroutines, loops and basic
blocks. Moreover, locality optimizations considering the boundary cal-
culations of FDM and a new static scheduler that enables more efficient
task schedulings on cc-NUMA servers are presented. The performance
evaluation shows 110 times speed-up using 128 cores against the sequen-
tial execution on a POWER7 based 128 cores cc-NUMA server Hitachi
SR16000 VM1, 37.2 times speed-up using 64 cores against the sequential
execution on a Xeon E7-8830 based 64 cores cc-NUMA server BS2000,
19.8 times speed-up using 32 cores against the sequential execution on a
Xeon X7560 based 32 cores cc-NUMA server HA8000/RS440, 99.3 times
speed-up using 128 cores against the sequential execution on a SPARC64
VII based 256 cores cc-NUMA server Fujitsu M9000, 9.42 times speed-up
using 12 cores against the sequential execution on a POWER8 based 12
cores cc-NUMA server Power System S812L.
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1 Introduction

Earthquake simulation that simulates the propagation of seismic waves from
hypocenters is important for minimizing the damage by natural disasters.
Earthquake wave propagation is often formulated as wave equation, which is
approximated by Finite Difference Method (FDM) or Finite Element Method
(FEM). The precise simulation usually requires huge calculation time, stud-
ies of earthquake simulation have been trying parallelization of the program.
Akcelik et al. [1] proposed an FEM earthquake simulation method parallelized by
MPI. Their parallelized Simulator using 3000 processor cores showed 80% par-
allel efficiency in weak scaling on the AlphaServer SC at the Pittsburgh Super-
computing Center (PSC). Aoi et al. [4] proposed the Ground Motion Simulator
(GMS) and parallelized the GMS with GPGPU. They showed the parallelized
GMS using 1024 nodes obtained 1028 times speed-up compared to 1 node in weak
scaling on the TSUBAME2.0 in Tokyo Institute of Technology. Tiankai et al. [3]
proposed the parallel octree meshing tool Octor and showed the evaluations of
the parallel Partial Differential Equation (PDE) solver using octree mesh by the
Octor on the AlphaServer SC at the PSC. They showed the solver using 2000
processor cores could speed-up earthquake simulation 13 times faster than that
of using 128 processor cores in strong scaling. Those works achieve high parallel
efficiency by hand parallelization. The hand parallelization needs deep knowl-
edge of parallelization and long development periods and costs. Moreover, most
existing studies achieve high parallel efficiency with weak scaling, but high par-
allel efficiency with strong scaling is more desirable than that with weak scaling.
In these days, cache coherent Non Uniform Memory Architecture (cc-NUMA)
is common architecture, this architecture requires additional tuning compared
to Uniform Memory Architecture. Therefore, parallelization that is efficient on
cc-NUMA by an automatic parallelizing compiler is expected for productivity
and performance.

This paper proposes a parallelization method that includes modifying a
sequential earthquake simulation program into a compiler friendly sequential
program to assist automatic parallelization of the OSCAR multigrain paralleliz-
ing compiler [5,6]. Unlike the OSCAR multigrain parallelizing compiler, com-
mercial compilers such as Intel Compiler and IBM XL compiler can utilize only
loop parallelism. Slight sequential parts prevent us from achieving scalable speed-
up in many core architecture. Therefore, multigrain parallelism offered by the
OSCAR compiler is important.

In this paper, the proposed method parallelizes the earthquake simulator
GMS, coarse grain task parallelism, as well as loop parallelism, is used. A locality
optimization considering the boundary calculations of FDM, a locality optimiza-
tion considering First Touch all over the program and an efficient task scheduling
on servers using First Touch policy help to us get strong scaling speed-up.

The remainder of this paper is organized as follows. Section 2 introduces the
earthquake wave propagation simulator GMS. Section 3 shows the proposed par-
allelization method. Section 4 gives speed-ups on five different cc-NUMA servers.
The servers consist of the SR16000 VM1 (henceforth SR16000), the BS2000,
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the HA8000/RS440 (henceforth RS440), the SPARC Enterprise M9000 (hence-
forth M9000) and the IBM Power System S812L (henceforth S812L). Finally,
Sect. 5 provides the conclusion.

2 The Ground Motion Simulator GMS

For effective disaster prevention planning, the importance of precise earthquake
simulations is increasing. The Ground Motion Simulator (GMS) is the earth-
quake simulator developed by Aoi, Fujiwara in the NIED, and the GMS can
precisely simulate for Japanese ground structure that we can download at J-SHIS
[2]. The GMS consists of parameter generation tools, computation visualization
tools and a wave equation solver, and we can download it from the URL in [7].

The GMS solves the wave equations in 3-D heterogeneous structure, and it
uses Finite Difference Method to approximate the wave equations. One of the
characteristics of the GMS solver is the use of staggered grids. For computation
accuracy, grid points for displacement are shifted from grid points for stress a
half grid in staggered grids. In staggered grids, second order difference operator
is (1).

f ‘i � fi+1/2 − fi−1/2

Δx
(1)

Fourth order difference operator that is higher accuracy than second order
difference operator is (2).

f ‘i � (−1/24fi+3/2 + 9/8fi+1/2

−9/8fi−1/2 + 1/24fi−3/2

)
/Δx (2)

Besides, the GMS solver uses discontinuous grids to accelerate the simulation.
In discontinuous grid, as shown in Fig. 1, grids of near the earth’s surface or
Region I is three times smaller than that of a deeper region or Region II. It
is because the grid spacing has to be smaller for precisely simulating waves of
shorter wavelength. In the grids near the surface, the wavelength is shorter than
that of the deeper region. By using discontinuous grid replace of uniform grid,
the GMS solver reduces calculation for the deeper region.

In brief, the GMS solver is to calculate velocity and stress of each grid and
each step by using external force as inputs.

In the GMS solver, external force can be added as velocity or stress and
second order difference operator or fourth order difference operator can be used.
This paper deals with the GMS solver in which external force is added as stress
and fourth difference operator is used.

3 Coarse Grain Task Parallelization of the GMS

This section proposes a parallelization method for the GMS. Before paralleliza-
tion, the sequential GMS solver written in Fortran 90 is changed into a sequential
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Fig. 1. Discontinuous grid in the GMS Fig. 2. Macro task graph of the GMS
main loop

FORTRAN 77 program. It is because the OSCAR compiler just supports FOR-
TRAN 77 and the GMS uses Fortran 90 to use the I/O library HDF [8] though
main parts are written in FORTRAN 77.

3.1 Coarse Grain Task Parallelization

This section shows how the OSCAR compiler [5,6] exploits parallelism in a pro-
gram. The OSCAR compiler can exploit multigrain parallelism that uses loop
parallelism, coarse grain task parallelism and statement level fine grain paral-
lelism considering its parallelism. Coarse grain task parallelism in the OSCAR
compiler means parallelism among three kinds of coarse grain tasks, namely
Basic Blocks (BBs), Repetition Blocks (RBs) and Subroutine Blocks (SBs).

First, the OSCAR compiler decomposes a sequential source program to macro
tasks in each nested level hierarchically. Then it makes macroflow graphs which
represent data dependency and control flow among the macro tasks. Next, it
analyzes and detects parallelism in the macroflow graphs by using Earliest Exe-
cutable Condition analysis [5] that analyzes the simplest forms of conditions
the macro tasks may start their execution considering control dependencies and
data dependencies, and then generates macro task graphs. Next, it analyzes and
detects parallelism in the macroflow graphs by using Earliest Executable Con-
dition analysis [5] and then generates macro task graphs. Earliest Executable
Condition analysis is to analyze the simplest forms of conditions the macro tasks
may start their execution considering control dependencies and data dependen-
cies. Macro task graphs represent parallelism among macro tasks. If the macro
task graph has only data dependency edge, the macro tasks are assigned by sta-
tic scheduling to processors or processor groups that are grouped logically by the
compiler for hierarchical coarse grain task parallelization. If the macro task graph
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has any control dependency edges, the macro tasks are assigned to processors or
processor groups at runtime by a dynamic scheduler. The dynamic scheduler is
generated by the OSCAR compiler exclusively for the program [5] and embedded
into the parallelized program automatically. Finally, the OSCAR compiler gen-
erates a parallelized Fortran program using the OSCAR API Ver2.0[11], which
the ordinary product OpenMP compilers provided for the target machines can
compile.

3.2 Modification of the GMS

Figure 2 shows the macro task graph in the main loop of the GMS. The macro
task graph was generated by the OSCAR compiler and has 18 macro tasks
and one exit task representing the end of the macro task graph. Solid edges in
macro task graph represent data dependencies among macro tasks and broken
edges in macro task graph represent control dependencies. There is parallelism
among coarse grain tasks such as parallelism between SB3 and SB4 in Fig. 2.
It is because of discontinuous grids of the GMS. In discontinuous grids, We
can execute velocity calculation of the near surface grids or SB3 and velocity
calculation of the grids in the deeper area or SB4 in parallel. After that, the
boundary of the near surface grids and the grids in the deeper area is executed
in SB5. There is similar parallelism for stress calculations. We can execute stress
calculation of the near surface grids or SB11 and stress calculation of the grids
in deeper area or SB12 in parallel.

Next, to increase coarse grain task parallelism, inline expansion is applied to
all subroutines, or SBs in Fig. 2, in the main loop. Figure 3 is the macro task
graph with 131 macro tasks for the main loop after the inline expansion of all
subroutines. We extract very large coarse grain task parallelism as shown in
Fig. 3. It is because coarse grain task parallelism inside the subroutines is taken
out to the main loop level. By the inline expansion, task parallelism among the
tasks in the SBs with dependency can be used. LOOP3 in Fig. 3 is originally
in SB1 in Fig. 2, and DOALL10 in Fig. 3 is originally in SB3 in Fig. 2. Though
SB1 and SB3 in Fig. 2 have dependency among them, LOOP3 and DOALL10
in Fig. 3 have no dependency among them. 60 macro tasks are analyzed to be
DOALL or parallel loop in Fig. 3. Since we can split each DOALL loop into
parallel macro tasks, much larger coarse grain task parallelism can be exploited.

Besides, to enhance loop parallelism and spatial locality, loop interchange
and array dimension interchange are applied.

3.3 Data Distribution to Distributed Shared Memories Using First
Touch

In cc-NUMA machines, how to distribute variables to memories is important to
get good performance. Usually, cc-NUMA machines use first touch policy [12].
On first touch policy, a page is allocated to the memory nearest to the processor
that first touched the page.
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Fig. 3. Macro task graph after inline expansion

The GMS solver uses the Hierarchical Data Format (HDF) library [8] for file
access. The HDF library is to allow us to manage large and complex data collec-
tions. The master thread executing the library first touches all input arrays of
the original GMS solver. It forces cc-NUMA machines to assign those arrays to
the distributed shared memory near the processor core that execute the master
thread. It means that all processor cores access to the distributed shared mem-
ory near the processor core executing the main thread, and the heavy memory
contention occurs.

To fully utilize distributed shared memories on cc-NUMA machines, in the
proposed method, the input arrays are copied to new arrays with interchanged
indexes to be first touched by each processor element. Figure 4 shows an exam-
ple of the modification. Originally, an array A is first touched in a subroutine
external library array init and is used in a subroutine main loop. Because the
OSCAR compiler can’t parallelize external library, a new array A COPY is cre-
ated and values of the array A are copied to the array A COPY . Then, the
subroutine main loop uses the array A COPY in place of the array A. In the
GMS, 33 arrays are copied to be first touched by each processor element.

3.4 Task Scheduling on Cc-NUMA

The control dependencies in the macro task graph are represented as broken
edges between tasks. There is no control dependency edge in Fig. 3. Therefore,
the OSCAR compiler chooses static scheduling to schedule the macro tasks to
processor elements.
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program sample
integer A(1000)
integer A_COPY(1000)
{copied array}
call external_library_array_init(A)
{a array is originally first touched here}
do i=1,1000

A_COPY(i)=A(i)
enddo
{copying the original array to a new array}
call main_loop(A_COPY)
{in main loop, the new array is used}
do i=1,1000

A(i)=A_COPY(i)
enddo
{copying the new array to the original array}
call output_A(A)

end

Fig. 4. Example of the array copy for first touch

On cc-NUMA machines, access to a remote distributed shared memory is
slower than that of a local distributed shared memory. So to improve the effi-
ciency of parallel processing of the program, a scheduler that takes accounts
of the first touch information was developed. By first touching the copied new
arrays mentioned above, the arrays used for the main loop are first touched at
the each copy loop, so the scheduler can know which processor element first
touched the array. The static scheduler decides optimal processors to execute
for each task using the first touch information, and then schedule ready tasks
to its optimal processors in order of critical path length. Critical path length is
the length of the longest path from any node to the exit node on a macro task
graph.

Fig. 5. An example of the scheduling
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Figure 5 is an example of the scheduling. Figure 5(a) is a macro task graph
and (b) shows how PEs first touch variables. Figure 5(c) represents the range
of arrays used by each task and the optimal PEs to which each task should be
assigned considering the information of the first touch showed in (b). Finally
Fig. 5(d) shows processing steps of the scheduling. In the third step of (d), the
task T3 is assigned to PE1. The task T3 is not dependent on T4, so if the task
T3 is assigned to PE0, the task T3 may start soon after the task T2 ended. But
if the task T3 is assigned to PE0, access to a remote distributed shared memory
would occur, so the scheduler assigns the task T3 to PE1. The scheduler restricts
the tasks to be assigned to the optimal PE considering the first touch to reduce
memory access overheads.

3.5 Locality Optimization of Boundary Calculations in FDM

Figure 6 is a source code of velocity calculation of the center grids or DOALL10
in Fig. 3 and that of boundary grids or DOALL11 in Fig. 3. The GMS use fourth
order difference operator for FDM calculations. But the fourth order difference
operator can’t be used at the boundary of the grids in the GMS. Therefore,
second order difference operator is used at the boundary. The DOALL10 and the
DOALL11 have no dependency among them, but both loops access the almost
same ranges of the arrays taking account of cache lines. Though cache reuse is
expected by executing the both loops continuously [9,10], the arrays used by the
both loops are too large to be fully stored in L2 or L3 caches.

{calculation of the center area}
do i=2,ni-1
do j=2,nj-1
do k=2,nk-2
ux(k,j,i)=(ux(k,j,i)+bbx*(

+dtdx*(c0*(sxx(k,j,i+1)-sxx(k,j,i))
- c1*(sxx(k,j,i+2)-sxx(k,j,i-1)))

+dtdy*(c0*(sxy(k,j,i)-sxy(k,j-1,i))
- c1*(sxy(k,j+1,i)-sxy(k,j-2,i)))

+dtdz*(c0*(sxz(k,j,i)-sxz(k-1,j,i))
- c1*(sxz(k+1,j,i)-sxz(k-2,j,i))))

)*aaqq
enddo

enddo
enddo
{calculation of the boundary}
do i=2,ni-1
do j=2,nj-1
do k=1,nk-1,nk-2
ux(i,j,k)=( ux(i,j,k)+bbx*(

+dtdx*(c0*(sxx(k,j,i+1)-sxx(k,j,i))
- c1*(sxx(k,j,i+2)-sxx(k,j,i-1)))

+dtdy*(c0*(sxy(k,j,i)-sxy(k,j-1,i))
- c1*(sxy(k,j+1,i)-sxy(k,j-2,i)))

+dtdz*(sxz(k,j,i)-sxz(k-1,j,i)) )
)*aaqq

enddo
enddo

enddo

Fig. 6. Example of center and boundary calculations
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In this section, the loop fusion is applied to the both loops to optimize the
locality. To focus on ux in Fig. 6, the DOALL10 uses ux(2: nk-2, 2: nj-1, 2: ni-1),
and the DOALL11 uses ux(1, 2: nj-1, 2: ni-1) and ux(nk-1, 2: nj-1, 2: ni-1).
Though the ranges of the array ux of the first loop don’t overlap with that of
the second loops, it is expected that ux(1, j, i) and ux(2, j, i) are allocated in the
same cache line. The same is true of ux(nk-2, j, i) and ux(nk-1, j, i). By the loop
fusion taking account of cache lines, memory access of the boundary calculation
in FDM is expected to be sharply optimized.

Figure 7 is the macro task graph of the main loop after loop fusion. The
proposed method fuses 12 loops into the four loops.

Fig. 7. Macro task graph after loop fusion

3.6 Generated Compiler Friendly Sequential Program
and its Parallel Compilation

The proposed method applies above-mentioned modifications to the sequential
GMS program. The modified sequential program is compiled by the OSCAR
compiler and changed into parallelized Fortran program using the OSCAR API
Ver2.0[11]. The OSCAR API is compatible with OpenMP. Therefore, compil-
ers provided for target cc-NUMA machines can compile the program with the
OSCAR API to the executable binary. In this paper, IBM XL Fortran compiler,
Intel Fortran compiler and Sun Studio Fortran compiler compile the generated
parallel programs.

4 Performance of the Parallelized GMS

This section evaluates speed-up of the parallelized GMS on five different cc-
NUMA machines.
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4.1 Evaluation Environments

The authors use the SR16000, the BS2000, the RS440, the M9000 and the S812L
for the evaluations. Table 1 summarizes the specifications of the five servers.

The SR16000 is a POWER7 based 128 cores cc-NUMA machine. The
SR16000 consists of four boards and the fully-connected network connects the
four boards. Each board has four processors and the fully-connected network
connects the four processors. The evaluations in Sects. 4.2, 4.3 and 4.4 use the
SR16000. The authors bind the paralelized programs to the processor cores by
the compact manner. The compact manner is to use processor cores in core
number order.

The BS2000 is a Xeon E7-8830 based 64 cores cc-NUMA machine. The spe-
cial feature of BS2000 is that it consists of four ordinary blade servers, however,

Table 1. Server Specifications

SR16000 BS2000 RS400

CPU POWER7 Xeon E7-8830 Xeon X7560

Frequency 4GHz 2.13GHz 2.27GHz

cores per 1 processor 8 8 8

L2 cache 256KB(1core) 256KB(1core) 256KB(1core)

L3 cache 32MB(1processor) 24MB(1processor) 24MB(1processor)

Processors 16 8 4

CPU cores 128 64 32

Memory 1TB 256GB 128GB

OS RedHat Linux RedHat Linux Ubuntu

Version 6.4 6.1 14.04.1

Linux kernel version 2.6.32 2.6.32 3.13.0

Compiler XL Fortran Intel Fortran compiler Intel Fortran compiler

Version 13.1 12.1.5 12.1.5

M9000 S812L

CPU SPARC64 VII POWER8

Frequency 2.88GHz 3.026GHz

cores per 1 processor 4 12(1 DCM),6(1 chip)

L2 cache 6144KB(1processor) 512KB(1core)

L3 cache none 96MB(1DCM),48MB(1chip)

Processors 64 1(DCM),2(chip)

CPU cores 256 12

Memory 512GB 64GB

OS Solaris RedHat Linux

Version 10 7.1

Linux kernel version 3.10.1

Compiler Sun Studio Fortran compiler XL Fortran

Version 12.1 15.1.1
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Table 2. Number of grids in datasets

Unit00420 Unit01680 Unit06720

Number of Grids in RegionI 420 × 420 × 100 1680 × 1680 × 100 6720 × 6720 × 100

Number of Grids in RegionII 140 × 140 × 200 560 × 560 × 200 2240 × 2240 × 200

Total Memory 0.8GB 12.2GB 195.2GB

just attaching the inter-blade coherent control module connecting the blades,
the blades is changed into a cc-NUMA server. Because each processor can use
three QPIs for inter-processor connection, some pairs of the processor are con-
nected directly and the other pairs are connected with one hop or two hops. The
evaluations in Sect. 4.3 use the BS2000. The authors bind parallelized programs
to the processor cores by the compact manner.

The RS440 is a Xeon X7560 based 32 cores cc-NUMA machine. The RS440
consists of four processors each of which has eight cores, and QPIs fully connect
each processor. The evaluations in Sect. 4.3 use the RS440. The authors bind
parallelized programs to the processor cores by the compact manner.

The M9000 is a SPARC64 VII based 256 cores cc-NUMA machine. The
M9000 consists of 16 boards each of which has 16 cores. Two crossbar switches
connect eight boards to make a cluster, and then two clusters are connected to
compose the M9000. The evaluations in Sect. 4.3 use the M9000. The evaluations
use up to 128 cores of 256 cores for the OSCAR compiler can cope with up to
128 cores at present. The authors bind parallelized programs to the every other
processor core to utilize L2 cache memory and main memory fully.

The S812L is a POWER8 based 12 cores cc-NUMA machine. The S812L
has a Dual Chip Module (DCM) and a Dual Chip Module includes two chip
each of which has six cores [13]. The evaluations in Sect. 4.3 use the S812L.
Though S812L has eight slots for DIMM modules, the authors equipped four
16GB DIMM modules to S812L.

The evaluations use three data sets such as Unit00420, Unit01680 and
Unit06720. Table 2 summarizes the number of grids in the data sets.
The Unit01680 is medium size among them and used for Sects. 4.2 and 4.3.
The Unit00420 is the smallest data set among them and used for Sect. 4.4. The
Unit06720 is the biggest data set among them and used for Sect. 4.4.

4.2 Comparison of Commercial Compilers and the Proposed
Method

The comparisons among the original GMS parallelized by commercial compil-
ers provided for the servers, such as IBM XL Fortran compiler, Intel Fortran
compiler and Sun Studio and the GMS parallelized by the proposed method are
shown.

Figure 8 shows a summary of the comparison between XL Fortran com-
piler and the proposed method on the SR16000. On a one processor core, the
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sequential execution time by the proposed method is 1.65 times faster than the
original sequential program. Speed-ups of the original GMS parallelized by XL
Fortran compiler were 15.3 times using 32 cores, 10.3 times using 64 cores and
11.8 times using 128 cores. It means that XL Fortran compiler can find loop
parallelism in the GMS, but it can’t give us scalable speed-up for the GMS on
64PEs and 128PEs in the SR16000. Speed-up of the GMS parallelized by the
proposed method using 128 cores was 156.3 times against the original sequential
execution. Higher speed-up by the proposed method using 128 PEs is obtained.
The first reason is that the parallelization by XL Fortran compiler can only
utilize loop parallelism, besides the proposed method can utilize multigrain par-
allelism. The second reason is that the master thread first touches the most of
arrays and those arrays are assigned to distributed shared memory near proces-
sor core that execute the master thread. Therefore, remote memory accesses of
parallel execution by XL Fortran compiler occur frequently and the execution
time gets long.

Figure 9 shows a summary of the comparison between Intel Fortran compiler
and the proposed method on the RS440. The proposed method works 1.3 times
faster than the original sequential execution. The speed-up ratio of Intel Fortran
compiler using 32PEs is 17.8 times, and it means that Intel Fortran compiler
can also find loop parallelism in the GMS. On the RS440, loop parallelization
works well. But on cc-NUMA with the bigger number of cores like the SR16000
and the M9000, the distance between the core and the remote memory becomes
farther. The parallelization of the initialization of the arrays and the coarse grain
task parallelization which consider First Touch is thought to be indispensable
on cc-NUMA with the big number of cores.

Figure 10 shows a summary of the comparison between Sun Studio and the
proposed method on the M9000. The proposed method gives us 2.1 times faster
execution than the original sequential execution. Moreover, the proposed method
using 128PEs gets 211 times speed-up from the original sequential execution.
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In Figs. 8, 9 and 10, the sequential executions of the proposed method get
speed-up from the original sequential executions. This is because the locality
optimization by the loop fusion described in Sect. 3.5.

4.3 Performance on the Five Different Cc-NUMA Servers

Speed-ups of the GMS parallelized by the proposed method from the sequential
execution of the proposed method on the five different cc-NUMA servers are
shown in Fig. 11. Speed-ups of the GMS on the SR16000 was 94.9 times using
128 cores, that with 64 cores on the BS2000 was 37.2 times, that with 32 cores
on the RS440 was 19.8 times, that with 128 cores on the M9000 was 99.3 times,
and that with 12 cores on the S812L was 9.42 times.

The BS2000 and the RS440 are relatively inexpensive servers compared to
the SR16000 and the M9000, memory bandwidth of the former two servers are
relatively narrow compared to the latter two servers. Therefore, speed-ups by
parallelization on the former two servers tend to be limited by the memory
bandwidth.

The speed-up of S812L is 9.42 times using 12 cores against sequential
processing. The parallel efficiency of the S812L using maximum core is 9.42 ÷
12 = 78.5%, and it is higher than that of the RS440(61%) and that of the
BS2000(58%).

On the SR16000 and the M9000, near 100 times speed-up using 128 cores can
be obtained. It means that the proposed method successively utilize cc-NUMA
machines.
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4.4 Evaluations with Various Data Sizes

Figure 12 summarizes the results of the evaluation with the various data sizes
on the SR16000. The speed-ups on the Unit00420, a relatively small data set,
were 25.0 times using 32 cores, 43.7 times using 64 cores and 75.7 times using
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Fig. 12. Speed-up ratios of the proposed method with various data sets on the SR16000

128 cores. Even on the smallest data set, over 64 times speed-up or a half number
of the cores used can be obtained. The speed-ups on the Unit06720 or the biggest
data set were 21.7 times using 32 cores, 58.7 times using 64 cores and 110.7 times
using 128 cores. Naturally, the results show that the bigger data size gives us
better speed-ups because of the smaller ratio of remote memory access in the
whole execution.

5 Conclusions

This paper has proposed a parallelizing optimization method of the earthquake
simulator GMS. We can use earthquake simulations for damage predictions of
earthquakes. By accelerating the earthquake simulations, it is expected that
more exact damage prediction required for protecting more lives from disaster
become possible. The proposed method modifies an original sequential Fortran
program into parallelizing compiler friendly sequential Fortran program by hand
to increase coarse grain task parallelism and data locality. The modifications by
hand are the loop interchange and the array dimension interchange described
in Sect. 3.2 and the array duplication described in Sect. 3.3 and the loop fusion
described in Sect. 3.5. By the simple modifications, the OSCAR compiler can
analyze coarse grain parallelism and data dependency among coarse grain tasks
and generate a portable parallel program. In the proposed method, once users
modify the original program into parallelizing compiler friendly sequential pro-
gram, no further work is required to port to another shared memory servers.

The performance evaluations show 110.7 times speed-up using 128 cores
against the sequential execution on the POWER7 based 128 cores cc-NUMA
server Hitachi SR16000 VM1, 37.2 times speed-up using 64 cores against the
sequential execution on the Xeon E7-8830 based 64 cores cc-NUMA server
BS2000, 19.8 times speed-up using 32 cores against the sequential execution
on the Xeon X7560 based 32 cores cc-NUMA server HA8000/RS440, 99.3 times
speed-up using 128 cores against the sequential execution on the SPARC64 VII
based 256 cores cc-NUMA server Fujitsu M9000, 9.42 times speed-up using 12
cores against the sequential execution on the POWER8 based 12 cores cc-NUMA
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server Power System S812L. Besides, the performance evaluation shows that the
proposed method succeeded to obtain 13.2 times speed-up against the parallel
execution by XL Fortran compiler using 128 cores on the SR16000 and 1.4 times
speed-up against the parallel execution by Intel Fortran compiler using 32 cores
on the RS440 and 211.0 times speed-up against the parallel execution by Sun
Studio Fortran compiler using 128 cores on the M9000.

The proposed method is effective for programs with simple array access order
like Finite Difference Method. Additional optimizations may improve the perfor-
mance of programs with complex array access order parallelized by the proposed
method. Finite Element Method often uses complex array access order.

This paper has shown the proposed parallelization method of the GMS using
the OSCAR multigrain parallel compiler gives us scalable speed-ups with strong
scaling on five different cc-NUMA servers.

Acknowledgment. The authors would like to thank the members of the Hitachi-
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Conc-Trees for Functional and Parallel
Programming
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Abstract. Parallel algorithms can be expressed more concisely in a
functional programming style. This task is made easier through the use of
proper sequence data structures, which allow splitting the data structure
between the processors as easily as concatenating several data structures
together. Efficient update, split and concatenation operations are essen-
tial for declarative-style parallel programs.

This paper shows a functional data structure that can improve the
efficiency of parallel programs. The paper introduces two Conc-Tree vari-
ants: the Conc-Tree list, which provides worst-case O(log n) time lookup,
update, split and concatenation operations, and the Conc-Tree rope,
which additionally provides amortized O(1) time append and prepend
operations. The paper demonstrates how Conc-Trees implement efficient
mutable sequences, evaluates them against similar persistent and muta-
ble data structures, and shows up to 3× performance improvements when
applying Conc-Trees to data-parallel operations.

1 Introduction

Balanced trees are good for data-parallelism. They can be easily split between
CPUs, so that their subsets are processed independently. Providing efficient con-
catenation and retaining these properties is challenging, but essential for efficient
declarative data-parallel operations. The following data-parallel program maps
numbers in the given range by incrementing them:

(0 until 1000000).toPar.map(x => x + 1)

When the per-element workload is minimal, as is the case with addition, the
overwhelming factor of the data-parallel computation is copying the data. Tree
data structures can avoid the need for copying results from different processors
by providing efficient concatentation. Another use case for trees is efficient par-
allelization of task-parallel functional programs. In the following we compare a
cons-list-based functional implemenation of the sum method against the conc-
list-based parallel implementation [16]:

c© Springer International Publishing Switzerland 2016
X. Shen et al. (Eds.): LCPC 2015, LNCS 9519, pp. 254–268, 2016.
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The first sum implementation decomposes the data structure xs into the first
element head and the remaining elements tail. Sum is computed by recursively
adding head to the sum of tail. This implementation cannot be efficiently par-
allelized. The second sum implementation splits xs into two subtrees ls and rs,
and recursively computes their partial sums before adding them together. If xs
is a balanced tree, the second sum implementation can be efficiently parallelized.

In this paper, we describe several variants of the binary tree data-structure
called Conc-Tree, used to store sequences of elements. The basic variant is per-
sistent [11], but we use Conc-Trees to design efficient mutable data structures.
Traditionally, persistent data structures are perceived as slower and less effi-
cient than imperative data structures. This paper shows that Conc-Trees are the
basis for efficient mutable data structures for parallel computing. Data-parallel
combiners [12,13] based on Conc-Trees improve performance of data-parallel
operations. Functional task-parallel programming abstractions, such as Fortress
Conc-lists [2], can be implemented using Conc-Trees directly. Concretely, the
paper describes:

– Conc-Tree lists, with worst-case O(log n) time persistent insert, remove and
lookup, and worst-case O(log n) persistent split and concatenation.

– Conc-Tree ropes, which additionally introduce amortized O(1) time ephemeral
append and prepend operations, and have optimal memory usage.

– Mutable buffers based on Conc-Trees, used to improve data-parallel operation
performance by up to 3× compared to previous approaches.

In Sect. 2, we introduce Conc-Tree lists. We discuss Conc-Tree ropes in
Sect. 3. In Sect. 4, we apply Conc-Trees to mutable data structures, and in Sect. 5,
we experimentally validate our Conc-Tree implementation. Finally, we give an
overview of related work in Sect. 6.

2 Conc-Tree List

Trees with relaxed invariants are typically more efficient to maintain in terms
of asymptotic running time. Although they provide less guarantees on their
balance, the impact is small in practice – most trees break the perfect balance
by at most a constant factor. Conc-Trees use a classic relaxed invariant seen in
red-black and AVL trees [1] – the longest path from the root to a leaf is never
more than twice as long than the shortest path from the root to a leaf.

The Conc-Tree data structure consists of several node types. We refer to
Conc-Tree nodes with the Conc type. This abstract data type has several concrete
data types, similar to how the functional List data type is either an empty list
Nil or a :: (pronounced cons) – element and another list. The Conc may either
be an Empty, denoting an empty tree, a Single, denoting a tree with a single
element, or a <> (pronounced conc), denoting two separate subtrees.

We show these basic data types in Fig. 1. Any Conc has an associated level,
which denotes the longest path from the root to some leaf in that tree. The
level is defined to be 0 for the Empty and Single tree, and 1 plus the level of
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abstract class Conc[+T] {
def level: Int
def size: Int
def left: Conc[T]
def right: Conc[T]
def normalized = this }

abstract class Leaf[T]
extends Conc[T] {

def left = error()
def right = error() }

case object Empty
extends Leaf[Nothing] {

def level = 0
def size = 0 }

case class Single[T](x: T)
extends Leaf[T] {

def level = 0
def size = 1

}

case class <>[T](
left: Conc[T], right: Conc[T]

) extends Conc[T] {
val level =

1 + max(left.level,
right.level)

val size =
left.size + right.size

}

Fig. 1. Basic Conc-Tree data types

the deeper subtree for the <> tree. The size of a Conc denotes the total number
of elements contained in the Conc-Tree. The size and level are cached as fields
in the <> type to prevent traversing the tree to compute them each time they
are requested. Conc trees are persistent like cons-lists – they are never modified
after construction. We defer the explanation of the normalized method until
Sect. 3 – for now normalized just returns the tree.

It is easy to see that the data types described so far can yield imbalanced
trees. We can construct arbitrarily large empty trees by combining the Empty
tree instances with <>. We thus enforce the following invariant – the Empty
tree can never be a part of <>. However, this restriction is still not sufficient –
imbalanced trees can be constructed by iteratively adding elements to the right:

(0 until n).foldLeft(Empty: Conc[Int]) {
(tree, x) => new <>(tree, new Single(x))

}
To ensure that the Conc-Trees are balanced, we require that the difference

in levels of the left subtree and the right subtree is less than or equal to 1.
This relaxed invariant imposes bounds on the number of elements. If the tree
is completely balanced, i.e. every <> node has two children with equal levels,
then the subtree size is S(level) = 2level. If we denote the number of elements
as n = S(level), it follows that the level of this tree is level = log2 n.

Next, if the tree is sparse and every <> node at a specific level has two
subtrees such that |left.level − right.level| = 1, the size of a node at level is:

S(level) = S(level − 1) + S(level − 2), S(0) = 1 (1)

This is the familiar Fibonacci recurrence with the solution:

S(level) =
1√
5
(
1 +

√
5

2
)level − 1√

5
(
1 − √

5
2

)level (2)
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The second addend in the previous equation quickly becomes insignificant,
and the level of such a tree is level = log 1+

√
5

2
n + log 1+

√
5

2

√
5.

From the monotonicity of these recurrences, it follows that O(log n) is both
an upper and a lower bound for the Conc-Tree depth. The bounds also ensure
that Conc-Trees have O(log n) lookup and update operations.

def apply(xs: Conc[T], i: Int) = xs match {
case Single(x) => x
case left <> right =>

if (i < left.size) apply(left, i)
else apply(right, i - left.size) }

def update(xs: Conc[T], i: Int, y: T) =
xs match {

case Single(x) => Single(y)
case left <> right if i < left.size =>

new <>(update(left, i, y), right)
case left <> right =>

val ni = i - left.size
new <>(left, update(right, ni, y)) }

The update operation produces a new Conc-Tree such that the element at
index i is replaced with a new element y. This operation only allows replacing
existing elements, and we want to insert elements as well. Before showing an
O(log n) insert operation, we show how to concatenate two Conc-Trees.

Conc-Tree concatenation is shown in Fig. 2. The <> method allows nicer
concatenation syntax – the expression xs <> ys concatenates two trees together.
Note that this is different than the expression new <> (xs, ys) that simply
links two trees together with one <> node – invoking the constructor directly
can violate the balance invariant. We refer to composing two trees together with
a <> node as linking. Creating a Conc-Tree that respects the invariants and
that is the concatenated sequence of the two input trees we call concatenation.

The bulk of the concatenation logic is in the concat method in Fig. 2. This
method assumes that the trees are normalized, i.e. composed from the basic data
types from Fig. 1. In explaining the code in Fig. 2 we will make an assumption
that concatenating two Conc-Trees can yield a tree whose level is either equal
to the larger input Conc-Tree or greater by exactly 1. In other words, concate-
nation never increases the Conc-Tree level by more than 1. We call this the
height-increase assumption. We will inductively show that the height-increase
assumption is correct while explaining the recursive concat method in Fig. 2.
We skip the trivial base case of merging Single trees.

The trees xs and ys may be in several different relationships with respect to
their levels. First of all, the absolute difference between the levels of xs and
ys could differ by one or less. This is an ideal case – the two trees can be linked
directly by creating a <> node that connects them. Otherwise, one tree has a
greater level than the other one. Without the loss of generality we assume that
the left Conc-Tree xs is higher than the right Conc-Tree ys. To concatenate xs
and ys we need to break xs into parts.
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def <>[T](xs: Conc[T], ys: Conc[T]) = {
if (xs == Empty) ys
else if (ys == Empty) xs
else concat(xs.normalized, ys.normalized) }

def concat[T](xs: Conc[T], ys: Conc[T]) = {
val diff = ys.level - xs.level
if (abs(diff) <= 1) new <>(xs, ys)
else if (diff < -1) {

if (xs.left.level >= xs.right.level) {
val nr = concat(xs.right, ys)
new <>(xs.left, nr)

} else {
val nrr = concat(xs.right.right, ys)
if (nrr.level == xs.level - 3) {

val nr = new <>(xs.right.left, nrr)
new <>(xs.left, nr)

} else {
val nl = new <>(xs.left, xs.right.left)
new <>(nl, nrr)

} }
} else {

if (ys.right.level >= ys.left.level) {
val nl = concat(xs, ys.left)
new <>(nl, ys.right)

} else {
val nll = concat(xs, ys.left.left)
if (nll.level == ys.level - 3) {

val nl = new <>(nll, ys.left.right)
new <>(nl, ys.right)

} else {
val nr = new <>(ys.left.right, ys.right)
new <>(nll, nr)

} } } }

Fig. 2. Conc-Tree concatenation operation

Assume that xs.left.level >= xs.right.level, in other words, that xs is
left-leaning. The concatenation xs.right <> ys in line 65 increases the height of
the right subtree by at most 1. This means that the difference in levels between
xs.left and xs.right <> ys is 1 or less, so we can link them directly in line 66.
Under the height-increase assumption, the resulting tree increases its height by at
most 1, which inductively proves the assumption for left-leaning trees.

We next assume that xs.left.level <> xs.right.level. The subtree
xs.right.right is recursively concatenated with ys in line 68. Its level may
be equal to either xs.level - 2 or xs.level - 3. After concatenation we
obtain a new tree nrr with the level anywhere between xs.level - 3 and
xs.level - 1. Note that, if the nrr.level is equal to xs.level - 3, then the
tree xs.right.left level is xs.level - 2, by the balance invariant. Depending
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on the level of nrr we either link it with xs.right.left, or we link xs.left
with xs.right.left, and link the resulting trees once more. Again, the resulting
tree does not increase its height by more than 1. This turns the height-increase
assumption into the following theorem.

Theorem 1 (Height Increase). Concatenating two Conc-Tree lists of heights
h1 and h2 yields a tree with height h such that |h − max(h1, h2)| ≤ 1.

The bound on the concatenation running time follows directly from the previous
theorem and the implementation in Fig. 2:

Theorem 2 (Concatenation Time). Concatenation of two Conc-Tree lists
with heights h1 and h2 is an O(|h1 − h2|) asymptotic running time operation.

Proof. Direct linking in the concatenation operation is always an O(1) operation.
Recursively invoking concat occurs at most once on any control path in concat.
Each time concat is called recursively, the height of the higher Conc-Tree is
decreased by 1, 2 or 3. Method concat will not be called recursively if the
absolute difference in Conc-Tree heights is less than or equal to 1. Thus, concat
can only be called at most O(|xslevel − yslevel|) times. ��
These theorems will be important in proving the running times of the data
structures shown later. We now turn to the insert operation to show the impor-
tance of concatenation on a simple example. The concatenation operation makes
expressing the insert operation straightforward:

def insert[T](xs: Conc[T], i: Int, y: T) =
xs match {

case Single(x) =>
if (i == 0) new <>(Single(y), xs)
else new <>(xs, Single(y))

case left <> right if i < left.size =>
insert(left, i, y) <> right

case left <> right =>
left <> insert(right, i - left.size, y) }

Insert unzips the tree along a certain path by dividing it into two subtrees
and inserting the element into one of the subtrees. That subtree will increase its
height by at most one by Theorem 1, making the height difference with its sibling
at most two. Merging the two new siblings is thus O(1) by Theorem 2. Since
the length of the path from the root to any leaf is O(log n), the total amount
of work done becomes O(log n). The split operation is similar to insert, and
has O(log n) complexity by the same argument.

Appending to a Conc-Tree list amounts to merging it with a Single tree:

def <>[T](xs: Conc[T], x: T) = xs <> Single(x)

The downside of appending elements this way is that it takes O(log n) time.
If most of the computation involves appending or prepending elements, this is
not satisfactory. We see how to improve this bound in the next section.
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3 Conc-Tree Rope

In this section, we modify the Conc-Tree to support an amortized O(1) time
ephemeral append operation. The reason that append from the last section takes
O(log n) time is that it has to traverse a path from the root to a leaf. Note that
the append position is always the same – the rightmost leaf. Even if we could
expose that rightmost position by defining the Conc-Tree as a pair of the root
and the rightmost leaf, updating the path from the leaf to the root would take
O(log n) time. We instead relax the Conc-Tree invariants.

We introduce a new Conc-Tree node called Append, which has a structure
isomorphic to the <> node. The difference is that the Append node does not
have the balance invariant – the heights of its left and right subtrees are
not constrained. Instead, we impose the append invariant on Append nodes: the
right subtree of an Append node is never another Append node. Furthermore,
the Append tree cannot contain Empty nodes. Finally, only an Append node may
point to another Append node. The Append tree is thus isomorphic to a cons-list
with the difference that the last node is not Nil, but another Conc-Tree.

This data type is transparent to clients and can alternatively be encoded as a
special bit in <> nodes – clients never observe nor can construct Append nodes.

case class Append[T](left: Conc[T], right: Conc[T])
extends Conc[T] {

val level = 1 + left.level.max(right.level)
val size = left.size + right.size
override def normalized = wrap(left, right)

}
def wrap[T](xs: Conc[T], ys: Conc[T]) =

xs match {
case Append(ws, zs) => wrap(ws, zs <> ys)
case xs => xs <> ys

}

We implement normalized so that it returns the Conc-Tree that contains
the same sequence of elements as the original Conc-Tree, but is composed only
of the basic Conc-Tree data types in Fig. 1. We call this process normalization.
The method normalized in Append calls the recursive method wrap, which folds
the trees in the linked list induced by Append.

We postpone claims about the normalization running time, but note that the
previously defined concat method invokes normalized twice and is expected to
run in O(log n) time – normalized should not be worse than O(log n).

We turn to the append operation, which adds a single element at the end of
the Conc-Tree. Recall that by using concat directly this operation has O(log n)
running time. We now implement a more efficient append operation. The invari-
ant for the Append nodes allows appending as follows:

def append[T](xs: Conc[T], ys: Single[T]) = new Append(xs, ys)

Defined like this, append is a worst-case constant-time operation, but it has
a negative impact on the normalized method. Appending n elements results
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�
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⇒
=

Fig. 3. Correspondence between the binary number system and append-lists

in a long list-like Conc-Tree on which normalized takes O(n log n) time. This
append implementation illustrates that the more time append spends organizing
the relaxed Conc-Tree, the less time a concat spends later.

Before attempting a different append implementation, note the correspon-
dence between a linked list of trees of different levels and the digits of differ-
ent weights in a standard binary number representation. This correspondence
is induced by linking two Conc-Tree nodes of the same level with a new <>
node, and adding two binary digits of the same weight. With binary numbers,
counting up to n takes O(n) computation steps, where one computation step is
rewriting a single digit in the binary representation. Adding 1 is usually an O(1)
operation, but the carries chain-react and occasionally require up to O(log n)
rewrites. It follows that adding n Single trees in the same way requires O(n)
computation steps, where a computation step is linking two trees with the same
level together – by Theorem 2, an O(1) operation.

We augment the append invariant – if an Append node a has another Append
node b as the left child, then a.right.level <> b.right.level. If we now
interpret the Conc-Trees under Append nodes as binary digits with the weight
2level, we end up with the sparse binary number representation [11]. In this
representation, zero digits (missing Conc-Tree levels) are not a part of the phys-
ical structure in memory. This correspondence is illustrated in Fig. 3, where the
binary digits are shown above the corresponding Conc-Trees and the dashed line
represents the linked list formed by the Append nodes.

Figure 4 shows the append operation that executes in O(1) amortized time.
The link operation in line 118, which corresponds to adding binary digits, occurs
only for adjacent trees that happen to have the same level. The trees in the
append list are in a form that is friendly to normalization. This list of trees of
increasing size is such that the height of the largest tree is O(log n), and no two
trees have the same height. It follows that there are no more than O(log n) such
trees. Furthermore, the sum of the height differences between adjacent trees is
O(log n). By Theorem 1 concatenating any two adjacent trees y and z in the
strictly decreasing sequence t∗xyzs∗ yields a tree with a height no larger than the
height of x. By Theorem 2, the total amount of work required to merge O(log n)
such trees is O(log n). Thus, appending in a way analogous to incrementing
binary numbers ensures O(log n) normalization.
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def append[T](xs: Conc[T], ys: Leaf[T]) =
xs match {

case Empty => ys
case xs: Leaf[T] => new <>(xs, ys)
case _ <> _ => new Append(xs, ys)
case xs: Append[T] => append(xs, ys) }

private def append[T](xs: Append[T], ys: Conc[T]) =
if (xs.right.level > ys.level) new Append(xs, ys)
else {

val zs = new <>(xs.right, ys)
xs.left match {

case ws @ Append(_, _) =>
append(ws, zs)

case ws =>
if (ws.level <= xs.level) ws <> zs
else new Append(ws, zs) } }

Fig. 4. Append operation

Note that the public append method takes a Leaf node instead of a Single
node. The conc-lists from Sect. 2 and their variant from this section have a high
memory footprint. Using a separate leaf to represent each element is inefficient.
Traversing the elements in such a data structure is also suboptimal. Conc-Tree
travesal (i.e. a foreach) must have the same running time as array traversal, and
memory consumption should correspond to the memory footprint of an array.
We therefore introduce a new type of a Leaf node, called a Chunk, that packs
the elements more tightly together. As we will see in Sect. 4, this also ensures an
efficient imperative += operation.

The Chunk node contains an array xs with size elements. The additional
argument k denotes the maximum size that a Chunk can have. The insert
operation from Sect. 2 must copy the target Chunk when updating the Conc-
Tree, and divides the Chunk into two if size exceeds k. Similarly, a remove
operation fuses two adjacent Chunks if their total size is below a threshold.

The Conc-Tree rope has one limitation. When used persistently, it is possible
that we obtain an instance of the Conc-Tree whose next append triggers a chain
of linking operations. If we repetitively use that instance of the tree for append-
ing, we lose the amortized O(1) running time. Thus, when used persistently, the
Conc-Tree rope has O(log n) appends. This limitation is overcome by another
Conc-Tree variant called a conqueue, described in related work [12]. Conc-Tree
ropes are nonetheless useful, since their simplicity ensures good constant fac-
tors and O(1) ephemeral use. In fact, many applications, such as data-parallel
combiners [13], always use the most recent version of the data structure.
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class ConcBuffer[T](val k: Int) {
private var conc: Conc[T] = Empty
private var ch: Array[T] = new Array(k)
private var lastSize: Int = 0
def +=(elem: T) {

if (lastSize >= k) expand()
ch(lastSize) = elem
lastSize += 1 }

private def expand() {
conc = append(conc, new Chunk(ch, lastSize, k))
ch = new Array(k)
lastSize = 0 } }

Fig. 5. Conc-Buffer implementation

4 Mutable Conc-Trees

Most of the data structures shown so far were persistent. This persistence comes
at a cost – while adding a single node has an O(1) running time, the constant
factors involved with allocating objects are still large. In Fig. 5, we show the
ConcBuffer data structure, which uses Conc-Tree ropes as basic building blocks.
This mutable data structure maintains an array segment to which it writes
appended elements. Once the array segment becomes full, it is pushed into the
Conc-Tree as a Chunk node, and a new array segment is allocated.

Although combiners based on growing arrays have O(1) appends [13], resiz-
ing requires writing an element to memory twice on average. Conc-ropes with
Chunk leaves ensure that every element is written only once. The larger the
maximum chunk size k is, the less often is a Conc operation invoked in the
method expand – this amortizes Conc-rope append cost, while retaining fast
traversal. The ConcBuffer shown above is much faster than Java ArrayList or
C++ vector when appending elements, and at the same time supports efficient
concatenation. The underlying persistent Conc-rope allows an efficient copy-on-
write snapshot operation.

5 Evaluation

In this section, we compare Conc-Trees against fundamental sequences in the
Scala standard library – functional cons-lists, array buffers and Scala Vectors.
In a cons-list, prepending an element is highly efficient, but indexing, updating
or appending an elements are O(n) time operations. Scala ArrayBuffer is a
resizeable array known as the ArrayList in Java and as vector in C++. Array
buffers are mutable random access sequences that can index or update elements
with a simple memory read or write. Appending is amortized O(1), as it occa-
sionally resizes the array, and rewrites all the elements. An important limitation
is that append takes up to 2 memory writes on average. Scala (and Clojure)
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Vectors are efficient trees that can implement mutable and persistent sequences.
Their defining features are low memory consumption and efficient prepending
and appending. Current implementations do not have concatenation.

We compare different Conc-Tree variants: lists, ropes, mutable Conc-Buffers,
as well as conqueues, described in related work [12].

We execute the benchmarks on an Intel i7 3.4 GHz quad-core processor. We
start with traversal – we evaluate the foreach on persistent Conc-Tree lists from
Sect. 2 and compare it to the foreach on the functional cons-list in Fig. 6A. Tra-
versing the cons-list is tail recursive and does not use the call stack. Furthermore,
Conc-Tree list traversal visits more nodes compared to cons-lists. Therefore, tra-
versing the basic Conc-Tree list is slower than traversing a cons-list. On the
other hand, the Chunk nodes ensure efficient traversal, as shown in Fig. 6B. For
k = 128, Conc-Tree traversal running time is 2× faster than that of Scala Vector.
In subsequent benchmarks we set k to 128.

Appending is important for data-parallel transformations. While higher con-
stant factors result in 2× slower conqueue appends compared to persistent
Vectors, persistent Conc-Tree rope append is faster (Fig. 6C). For comparison,
inserting into a red-black tree is approximately 4× slower than appending to a
conqueue. In Fig. 6D, we compare Conc-Tree buffers against mutable Scala Vec-
tors. Resizeable array appends are outperformed by all other data structures.

When it comes to prepending elements, cons-lists are very fast – prepending
amounts to creating a single node. Cons-list have the same performance as muta-
ble conqueue buffers, even though cons-lists are persistent. Both Scala Vectors
and persistent conqueues are an order of magnitude slower.

Concatenation has the same performance for both persistent and mutable
Conc-Tree variants. Concatenating mutable variants requires taking a snapshot,
which can be done lazily in constant-time [14]. We show concatenation per-
formance in Fig. 6F, where we repeat concatenation 104 times. Concatenating
Conc-ropes is slightly more expensive than conc-list concatenation because of
the normalization, and it varies with size because the number of trees (that is,
non-zeros) in the append list fluctuates. Conqueue concatenation is slower (note
the log axis) due to the longer normalization process. Concatenating lists, array
buffers and Scala Vectors is not shown here, as it is a linear time operation, and
thousands of times slower for the same number of elements.

Random access is an operation where Scala Vectors have a clear upper hand
over the other persistent sequences. Although indexing a Scala Vector is faster
than indexing Conc-Trees, both are orders of magnitudes slower than array ran-
dom access. We note that applications that really need random-access perfor-
mance must use arrays for indexing operations, and avoid Vector altogether.

We show memory consumption in Fig. 6H. While a Conc-Tree list occupies
twice as much memory as a functional cons-list, using Chunk nodes has a clear
impact on the memory footprint – arrays, Scala Vectors and Conc-Trees with
Chunk nodes occupy an almost optimal amount of memory, where optimal is
the number of elements in the data structure multiplied by the pointer size.
Resizeable arrays waste up to 50% of space due to their resizing policy.
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Fig. 6. Conc-Tree benchmarks (smaller is better)
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Data-parallel operations are the main use-case for Conc-Trees. Scala collec-
tion framework defines high-level collection combinators, such as filtering, group-
ing, mapping and scanning. This API is similar to high-level data-processing
APIs such as FlumeJava and Apache Spark. The example from Sect. 1 shows how
to map numbers from a parallel range of numbers using the map operation. This
map operation works by parts of the parallel range across different processors,
and producing parts of the resulting collection in parallel. The lambda function
x => x + 1 is used on each input element to produce an output element. After
independent processors produce intermediate collections, their results must be
merged into a new collection. When the resulting collection is an array, interme-
diate array chunks cannot be simply linked together – instead, a new array must
be allocated, and intermediate results must be copied into it. The array cannot
be preallocated, because in general the number of output elements is not known
in advance – in most data-parallel operations, a single input element can map
into any number of output elements, determined after the lambda is run.

In the ScalaBlitz parallel collection framework [13,15], the unifying abstrac-
tion that allows expressing different parallel operations on Scala collections
generically, is called a combiner. The combiner defines three generic operations:
adding a new element to the combiner (invoked every time a new output element
is created), merging two combiners (invoked when combiners from two different
processors are merged), and producing the final collection (which is invoked once
at the end of the operation). The arrays created from the parallel ranges in the
map operation use a special array-based combiner, as described above.

We replaced the standard array-based combiner implementation in ScalaBlitz
with Conc-Tree-based combiners, and compared data-parallel map operation per-
formance with and without Conc-Trees in Fig. 6I, and data-parallel filter opera-
tion performance in Fig. 6J.

With Conc-Trees, performance of the data-parallel mapping is improved by
2 − 3×. The reason for this improvement is two-fold. First, array chunks stored
inside Conc-Trees do not need bulk resizes, which array-based combiners period-
ically do. This is visible in Fig. 6I,J, where the array-based combiner has spikes
at certain input collection sizes. Second, Conc-Tree-based combiners avoid copy-
ing each element twice, since intermediate Conc-Trees from different processors
can be efficiently merged without copying.

6 Related Work

Standard programming language libraries come with resizeable array implemen-
tations, e.g. the ArrayList in the JDK or the vector in C++ standard template
library. These are mutable data structures that provide O(1) worst case time
indexing and update operations, with O(1) amortized time append operation.
Although appending is amortized O(1), each append on average requires two
writes to memory, and each memory location is allocated twice. Concatenation
is an O(n) operation. Cons-lists have an efficient push-head and pop-head, but
other operations are O(n).
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Ropes are heavily relied upon in the Xerox Cedar environment [5], where bulk
rebalancing is done after the rope becomes particularly skewed. These ropes have
an amortized O(log n) operation complexity. VList [3] is a functional sequence,
with logarithmic time lookup operations. Scala Vector [4] is a persistent sequence
implementation. Its dequeue operation has low constant factors, but requires
O(log n) time. Scala Vector does not support concatentation, since concatenation
support slows down other operations.

The idea of Conc lists was proposed in the Fortress language [2], where par-
allel programs are expressed as recursion and pattern matching on three types
of nodes – empty, single element or conc nodes [16]. All Conc-Tree variants from
this paper provide the same programming model as conc-lists from Fortress.

Relaxing the balancing requirements to allow efficient updates was first pro-
posed by Adelson-Velsky and Landis, in the AVL tree data structure [1]. Okasaki
was one of the first to bridge the gap between amortization and persistence
through the use of lazy evaluation [9]. While persistent random access lists rely
on binary number representations to achieve efficient append operations, they
are composed from complete trees of different heights, and do not support con-
catenation as a consequence [11].

The recursive slowdown techniques were worked on by Kaplan and Tarjan
[7]. Previously, persistent sequence data structures were proposed that achieve
constant time prepend and append operations, and asymptotic constant time
concatenation [8]. Although asymptotic bounds of these data structures are bet-
ter than that of Conc-Trees, their operations have higher constant factors, and
increased implementation complexity. The catenable real-time queues due to
Okasaki allow efficient concatenation but do not have the balanced tree struc-
ture required for parallelization, nor support logarithmic random access [10].
Hinze and Paterson describe a lazy finger tree data structure [6] with amortized
constant time deque and concatenation operations.

7 Conclusion

This paper introduces Conc-Tree data structures for functional parallel program-
ming with worst-case O(log n) time splitting and concatenation. The Conc-Tree
list comes with a worst-case O(log n1

n2
) time concatenation with low constant fac-

tors. The Conc-Tree rope provides an amortized O(1) time append and prepend
operations. In terms of absolute performance, persistent Conc-Trees outperform
existing persistent data structures such as AVL trees and red-black trees by a
factor of 3 − 4×, and mutable Conc-Trees outperform mutable sequence data
structures such as mutable Vectors and resizeable arrays by 20 − 50%, addition-
ally providing efficient concatenation. Data-parallel operation running time can
be improved by up to 3×, depending on the workload characteristic.

When choosing between different Conc-Tree variants, we advise the use
of ropes for most applications. Although Conc-Tree ropes achieve amortized
bounds, ephemeral use is typically sufficient.

Besides serving as a catenable data-type for functional task-parallel pro-
grams, and improving the efficiency of data-parallel operations, the immutable
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nature of Conc-Trees makes them amenable to linearizable concurrent snapshot
operations [12]. Inefficiencies associated with persistent data can be amortized
to a near-optimal degree, so we expect Conc-Trees to find their applications in
future concurrent data structures.
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Abstract. Reducing floating-point precision allocation in HPC prog
rams is of considerable interest from the point of view of obtaining higher
performance. However, this can lead to unexpected behavioral deviations
from the programmer’s intent. In this paper, we focus on the problem of
divergence detection: when a given floating-point program exhibits differ-
ent control flow (or differs in terms of other discrete outputs) with respect
to the same program interpreted under reals. This problem has remained
open even for everyday programs such as those that compute convex-
hulls. We propose a classification of the divergent behaviors exhibited
by programs, and propose efficient heuristics to generate inputs causing
divergence. Our experimental results demonstrate that our input gener-
ation heuristics are far more efficient than random input generation for
divergence detection, and can exhibit divergence even for programs with
thousands of inputs.

1 Introduction

Almost anyone writing a program involving floating-point data types wonders
what precision to allocate (single, double, or higher). There is a great temptation
to get away with single precision, as it can yield performance advantage of a
factor of 2.5 for CPU codes [20] or even higher for GPU codes [21,29]. Yet,
floating-point arithmetic is highly non-intuitive, causing non-reproducible bugs
and nightmarish debugging situations [8,10,24,25,28]. For instance, experts in
a recent project had to waste several days chasing a Xeon vs. Xeon-Phi floating-
point behavioral deviation where identical source code running on these machines
took different control paths for the same input [22].

Any program in which floating-point results flow into conditional expressions
can decide to take different control paths based on floating-point round-off. Also,
if a developer banks on a program meeting a specific post-condition, they may
find that the truth of the post-condition can depend again on floating-point
round-off. Such divergent behaviors (“divergence”) have been widely discussed
in the literature. Kettner et al. [18] demonstrated that a geometric convex hull
construction algorithm can result in non-convex hulls under certain (manually

Supported in part by NSF Grants CCF 1421726 and ACI 1535032. This work was
also performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE- AC52-07NA27344 (LLNL-
CONF-669095).

c© Springer International Publishing Switzerland 2016
X. Shen et al. (Eds.): LCPC 2015, LNCS 9519, pp. 271–286, 2016.
DOI: 10.1007/978-3-319-29778-1 17

adrien.cassagne@inria.fr



272 W.-F. Chiang et al.

Fig. 1. Motivating examples

generated) inputs. Problems due to inconsistency in geometric computations
are described in great detail in the context of computer games [12]. The author
of [27] suggests the use of “padding constants” followed by “thorough testing” as
a practical solution to guard against the nasty surprises of divergence. With the
increasing role of geometry in real life (e.g., manufacture of prosthetics using 3D
printing, computer gaming, mesh generation, robot motion planning), divergence
becomes a life-critical or resource-critical issue, and must be systematically tack-
led. While allocating higher floating-point precision can reduce the incidence of
divergence, a programmer will not go this route (and suffer a slow-down) unless
they have at least one piece of evidence (in the form of an input causing diver-
gence – hereafter called diverging input) that this measure is necessary. We show
that without systematic testing one can fail to find even one divergent behavior
for many programs.

The hopelessness of manual reasoning can be highlighted through the pro-
gram in Fig. 1a where, for simplicity, we consider 8-bit floating-point values. Let
float8 have one sign bit s, four bits of mantissa (or precision) m, and three bits
of exponent e representing the value (−1)s ·1.m ·2e−4. One may not be surprised
if told that this program may return 33 (under standard IEEE floating-point
with round to nearest applied), while returning 22 if we used reals instead of
float8. However, it is virtually impossible to manually obtain even one diverging
input.1 Purely random testing is ineffective for exhibiting divergence due to the
huge state space it faces. There has been very little prior work on efficiently
identifying diverging inputs. In this paper, we propose and evaluate methods
to rapidly discover diverging inputs for many useful floating-point primitives.
Such primitives are known to be used in many applications—for example, mesh
generation.

We focus on the problem of developing efficient heuristics to generate diverg-
ing inputs. We assume that the user has identified discrete features (e.g., return-
ing 22 or 33 in our example) as one of the key observable results from the

1 a = e = d = 1.0000 ·2−3, b = f = 1.0000 ·22, and c = 1.0001 ·2−3 causes divergence.

adrien.cassagne@inria.fr



Practical Floating-Point Divergence Detection 273

program.2 Our algorithms then generate diverging inputs in a lower precision
(say, 32-bit) computation.

While all divergences are attributable to some deviation in conversion of
floating-point to discrete value such as deviation in control-flow, it is also well
known (e.g., [7]) that many control-flow deviations do not cause divergence.
In this paper, we describe divergence detection with respect to the user-given
set of discrete features. Clearly, control-flow deviation is an extreme case in
our definition: the discrete feature in that case is nothing but the full control-
flow path.

The difficulty of identifying diverging inputs is due to (1) the sheer number of
input combinations to be considered, (2) non-uniformity of floating-point num-
ber distribution, (3) the layers of floating-point operations (e.g., non-linear and
transcendental operators and their associated rounding modes, catastrophic can-
cellations during subtraction [14]) that are involved before a conditional expres-
sion’s truth value is determined, and (4) poor scalability of symbolic methods
since floating-point arithmetic decision procedures are in their infancy. While
our previous work [9] helps identify inputs that cause high round-off errors in
floating-point functions, such methods cannot be directly used to identify diverg-
ing inputs. In this paper, we present an approach that addresses these difficulties
by employing empirical search methods to efficiently discover diverging inputs.
Ours is the first attempt to classify problems in this area into discernible groups,
and provide heuristic approaches for input generation to trigger divergence. Our
contributions in this paper are the following:

– Two approaches to trigger divergence in programs of interest to practitioners.
– A classification of programs into two categories, with corresponding new

heuristics to trigger divergence in each category.

2 Overview of Our Approach

Given a program P and its input i, let PR(i) indicate the result of running the
program on i under real number arithmetic. For simplicity, let vector i capture
both the “data input” and “initial program state” of P . Let PF be the floating-
point version of PR. We are interested in those inputs i under which PF (i) �≡
PR(i), where ≡ is some coarse equivalence relation since a programmer may
not want bit-for-bit equality, but rather something higher level. We define ≡
with the help of an abstract state space A ⊆ U for some universe U , and an
abstraction map α that maps into U . Then, a computation is divergent when
α(PF (i)) �= α(PR(i)).

Example 1: In the example of Fig. 1a, the relevant abstract state space is given
by A = U = {22, 33}; we call the members of A discrete features (or discrete
signatures). The input a = e = d = 1.0000 · 2−3, b = f = 1.0000 · 22, and

2 Real arithmetic is simulated by allocating very high precision. Typically we aim for
64- or 128-bit precision.
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c = 1.0001 · 2−3 causes divergence. We now introduce our first search method
called abstract binary search (ABS), which works as follows:

– We first use random testing to generate inputs i1 and i2 with signatures S1

and S2 under floating-point such that S1 �= S2. In Fig. 1a, i1 may under float8
result in signature 22 and i2 in signature 33.

Suppose i1 results in 22 and i2 in 33 under reals as well, and hence this is
not a divergent situation.

– We use the discovered pair 〈i1, i2〉 to bootstrap the binary search part of ABS.
We compute the midpoint mid = (i1 + i2)/2 (taking /2 as a suitable way
of finding the midpoint of two N-dimensional points) and proceed recursively
with 〈i1,mid〉 and 〈i2,mid〉 as new pairs of inputs (details in Algorithm1).

– If/when the floating-point signature output generated for mid differs from its
real signature, we have located a diverging input and the algorithm terminates.

Example 2: We now introduce our second search method called guided random
testing (GRT). Figure 1b computes the variance of x and y in terms of “mean
of squares minus square of mean”. Variances are non-negative, as captured by
the given post-condition. We therefore choose U = {T, F} to model Boolean
truth, and A = {T} to represent when the desired post-condition holds. In more
detail, we have observed that for many problems (examples given in Sect. 4.2),
the desired post-condition is of the form (e1 ≥ 0) ∧ (e2 ≥ 0) . . . (en ≥ 0),
where ei are expressions. GRT chooses one ei ≥ 0 conjunct, and it attempts to
generate inputs that falsify it under floating-points (all conjuncts are assumed to
be true under reals). In Sect. 3.2, we present a heuristic based on relative errors
that helps find such inputs.

ABS vs. GRT: We recommend the use of GRT whenever a post-condition
(always true under reals) has a chance of being violated under floating-points.
On the other hand, ABS is recommended whenever such a post-condition does
not exist, and one can bootstrap the process by quickly finding input i1 and i2
causing unequal signatures S1 and S2 under floating-points. The examples in
this paper clarify further how we choose between these two search methods. We
consider a more involved example next.

Example 3: Let P be a program computing a convex hull for a collection
of points i. First, consider a simple case where i consists of five 2D points
{〈0, 0〉, 〈C, 0〉, 〈C,C〉, 〈C, 2C〉, 〈0, 2C〉}, where C and 2C are representable in
floating-points. A convex hull algorithm is correct if the hull it returns is con-
vex and encloses all the points (i.e., no point lies outside). According to this
definition, there are two correct answers in this case:

– {〈0, 0〉, 〈C, 0〉, 〈C,C〉, 〈C, 2C〉, 〈0, 2C〉} or
– {〈0, 0〉, 〈C, 0〉, 〈C, 2C〉, 〈0, 2C〉}.

In this example, one could either choose an exact listing of coordinates as the
signature, or a more abstract signature such as the number of vertices in the
convex hull. Whatever be our choice of signatures, we reiterate that in our
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approach (1) signatures are the only means of observing program behavior,
(2) the signature returned by the real-valued computation is taken as the golden
truth, and (3) divergence exists when the floating-point computation returns a
different signature than the real computation.

Let the chosen signature be the number of vertices in the convex hull. Con-
sider the input {〈0, 0〉, 〈C, 0〉, 〈C − δ, C〉, 〈C, 2C〉, 〈0, 2C〉}, where δ is very small,
but C − δ is still representable in floating-points. For this input, our convex hull
program returns 4 as the signature under reals. However, it may return 5 under
floating-points due to round-off errors. This is an example of a divergent input
according to our definition. We now summarize some of our observations:

– Signatures are a mechanism to mimic the “desired output”.
– Some signatures (e.g., the count of the number of vertices in a convex hull) are

strong, in that we observe empirically that one can arrive at diverging inputs
fairly quickly.

– One can always choose the entire taken control-flow path as a signature. We
empirically show that such signatures are typically weak, meaning that they
make locating divergences very hard. Our experience shows that a good sig-
nature must ideally be a mapping into a small abstract space A.

3 Methodology

Given a program P and its input domain I, we assume that each input i ∈ I is
a scalar vector and I is convex. Let iX , iY ∈ I be two inputs; then I is convex
if all inputs in-between are also in I: ∀0 ≤ k ≤ 1 . iX ∗ k + iY ∗ (1 − k) ∈ I. The
midpoint of iX and iY is obtained by setting k to 0.5. A signature, as mentioned
in the previous sections, is a discrete feature (or abstraction) of the concrete
program output. Then, a signature function α maps program outputs under
either floating-point or real arithmetic executions to abstract signature states.

For every input i ∈ I, the output PF (i) of an execution under floating-points
is supposed to have the same signature as the output PR(i) of an execution under
reals. The differential contract of a program, which specifies when a divergence
exists, is defined using the following predicate:

div(P, i) =def α(PF (i)) �= α(PR(i)). (1)

Predicate div states that a divergence occurs when the signatures of real and
floating-point outputs (i.e., executions) differ.

3.1 Abstract Binary Search (ABS)

Figure 2a illustrates how ABS detects divergence for the program in Fig. 1a. Here,
the x-axis shows the values of (a+ b)+ c and the y-axis the values of (d+ e)+ f .
The diagonal separates the abstract signature state spaces of 22 and 33. ABS
first finds a vector i1 of values for inputs a, . . . , f , whose abstract signature is 33
under both reals and floating-points (shown as point (1)). Then, it finds a vector
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Algorithm 1. Abstract Binary Search (ABS)
1: procedure ABS (P , α, I)
2: repeat � Find starting pair of points
3: iA = Random(I)
4: if div(P, iA) then return iA
5: iB = Random(I)
6: if div(P, iB) then return iB
7: until α(PF (iA)) �= α(PF (iB))
8: E = {〈iA, iB〉} � Bootstrap binary search between end points
9: while E �= ∅ do
10: 〈iX , iY 〉 = Select(E)
11: E = E \ {〈iX , iY 〉}
12: if ∃iM midpoint of 〈iX , iY 〉 distinct from iX , iY then
13: if div(P, iM )) then return iM
14: if α(PF (iX)) �= α(PF (iM )) then
15: E = E ∪ {〈iX , iM 〉}
16: end if
17: if α(PF (iM )) �= α(PF (iY )) then
18: E = E ∪ {〈iM , iY 〉}
19: end if
20: end if
21: end while
22: restart search � Optional restart step
23: end procedure

Fig. 2. Applying ABS and GRT on examples from Fig. 1a and b

i2 whose abstract signature is 22 under both reals and floating-points (shown as
point (2)). The pair 〈i1, i2〉 is the input of the subsequent binary search. (Note
that ABS is typically not applicable on examples where finding points as above
is extremely difficult, as Fig. 2b illustrates).

Our binary search method successively divides the N-dimensional space
between vectors i1 and i2 by finding midpoints of these vectors (points (3) and
(4) depict this N-dimensional binary search). It is highly unlikely that all points
in this search sequence would all evaluate to the same abstract state under reals
and floating-points. This is because it is also unlikely that the evaluations of the
constituent expressions in the given program under reals, and their correspond-
ing evaluations under rounding, would track each other perfectly with respect
to the chosen discrete features.3 As a consequence, ABS eventually encounters

3 In practice, we do occasionally encounter a sequence whose discrete signatures match
perfectly, and ABS exhausts all possible midpoints. In such cases, ABS is restarted
with a different random seed.
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a point (akin to point (4)) that lies at the borderline of the abstract spaces and
causes a divergence.

The efficiency of ABS heavily depends on the chosen signature function. It
must be possible to efficiently find — through a few random sampling steps —
the initial points i1 and i2 that map to distinct abstract states. For example, it
must be possible to efficiently locate points (1) and (2) in Fig. 2a.

Algorithm 1 gives pseudocode of ABS. As input it takes a program P , a sig-
nature function α, and the input domain I, and it outputs a divergence-inducing
input vector. The first phase of ABS (lines 2–7) finds the initial pair of points
〈iA, iB〉 satisfying α(PF (iA)) �= α(PF (iB)) by employing random sampling. The
second phase (lines8–21) successively subdivides the space between a pair of
points by removing a pair 〈iX , iY 〉 from E and seeking a divergence-inducing
midpoint iM . Under floating-point arithmetic, iM can be equal to iX or iY ,
which means we exhausted all midpoints, but could optionally restart. Other-
wise, we determine which of the pairs 〈iX , iM 〉 or 〈iM , iY 〉 are eligible for further
search, and we add them to E. The while-loop of the second phase is guaran-
teed to terminate because floating-point domains are finite. The ABS procedure
either returns a divergence-inducing input vector or timeouts (with the optional
restart at line 22 using a different random seed). We rarely encountered timeouts
in our empirical evaluation.

3.2 Guided Random Testing (GRT)

We designed GRT based on a key observation: a divergence occurs when one of
the expressions in the signature has a high relative error; we now detail why this
is so. The relative error of a value v is defined as |vR−vF

vR
| [14]. In the example

from Fig. 1b, the relative error of var must be high, and specifically greater
than 1, when a negative variance is returned. Figure 2b illustrates that this is
very rare by showing the space of contract (post-condition) violations and the
space where the contract is met. Similarly, Fig. 2c shows all the diverging inputs
obtained using a satisfiability modulo theories (SMT) solver [11].4

Let varR (resp. varF ) be the variance computed under real (resp. floating-
point) execution. Then, a divergence occurs when (varR ≥ 0) ∧ (varF < 0),
which implies varR − varF > varR. Thus, the relative error on var must exceed
1, meaning |varR−varF

varR
| > 1.

We have found that many problems amenable to GRT have a post-condition
expressible as a conjunction (e1 ≥ 0) ∧ (e2 ≥ 0) ∧ . . . ∧ (eN ≥ 0), where ei is a
floating-point expression. Given such a formula, GRT aims to negate one of the
conjuncts using guided random search. For this purpose, we employ our S3FP
tool that efficiently maximizes a relative error of a given expression [9]. We now
detail two approaches we investigated to drive the optimization.

4 Current state-of-the-art SMT solvers work on micro-benchmarks with micro floating-
point formats such as the program in Fig. 1b; they still cannot handle realistic
floating-point programs used in our work.
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Algorithm 2. Guided Random Testing (GRT)
1: procedure GRT (P , α, I)
2: fobj = ExtractObjective(α)
3: while ¬Timeout() do
4: i = Optimizer(P, I, fobj)
5: if div(P, i) then return i
6: end while
7: end procedure

Single-term Objective: Choose one ei from e1 . . . eN as the objective for trig-
gering high relative error.

Multi-term Objective: Maximize
∑N

i=1 err(ei) such that

err(ei) =
{ |rel err(ei)| : |rel err(ei)| < 1

1 : otherwise
,

where rel err(ei) is the relative error of expression ei.
Algorithm 2 gives the pseudocode of GRT where we assume existence of a

suitable function ExtractObjective that realizes either the single-term or the
multi-term objective. Note that it if often convenient to provide a signature
function that only loosely specifies program contracts, and falsifying such a con-
tract does not always imply divergence (an example is provided in Sect. 4.2).
Hence, each input vector returned by the optimizer (S3FP in our case) has to
be checked to establish divergence using predicate div.

4 Experimental Results

We have evaluated ABS and GRT on a collection of realistic numerical routines.
These routines regularly find applications in implementations of higher level
algorithms such as Delaunay triangulation (often used for mesh generation) and
other operations in high-performance computing [6]. Divergence detection for all
benchmarks is achieved using differential contracts as stated in Eq. 1 and defined
in Sect. 3. The only exception is the approximate sorting benchmark, which
invokes an externally specified contract (see Sect. 4.2). As defined in Sect. 3, a dif-
ferential contract is a comparison between signatures of outputs computed under
reals and floating-points. We use high-precision floating-points to approximate
reals, which is a technique employed in many floating-point analysis approaches
(e.g., [3,9]). We categorize our benchmarks based on the signature model they
follow.

4.1 ABS Benchmarks

Convex Hull: The algorithm takes a set of 2D points as input and outputs a
2D polygon. A coordinate of each point is a floating-point value in the range
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[−100, 100). The generated (convex) polygon must encompass all input points;
we take the polygon vertex-count as our signature. We study four convex hull
algorithms: simple [4], incremental [18], quick-hull [5], and Graham’s scan [15].
The quick-hull and Graham’s scan algorithms were taken from CGAL [6], which
is a popular open-source geometric computation library.

Shortest Path: We implemented the well-known Floyd-Warshall shortest path
algorithm [13], which calculates all-pair shortest paths for a graph. Our imple-
mentation takes a complete directed graph as input, and outputs a boolean value
indicating the existence of a negative cycle. The input graph is represented as
a sequence of floating-point edge-weights in the range [−1, 10). The signature is
the same as output: a boolean value indicating the existence of a negative cycle.

Intersection Between a 3D Line and Adjacent Triangles: This benchmark
checks whether a 3D line intersects with two adjacent triangles. It takes six
3D points as input—four for the adjacent triangles and two for the line. The
intersection scenario is one of the following types: the line (1) intersects with
a triangle, (2) passes between the two triangles, and (3) neither. The signature
indicates whether the intersection scenario is type (2), which is an unexpected
scenario as described in related work [12]. This benchmark is taken from CGAL.

Geometric Primitives: These benchmarks, taken from CGAL, involve com-
puting relationships between geometric objects, including a 2D triangle inter-
section test and several point-orientation tests. The triangle intersection test
takes two 2D triangles as input, and determines if they intersect or not. Each
point-orientation test takes a 2D/3D point and a 2D/3D shape as input, and
determines if the point is inside/above or outside/below the shape. We collected
four point-orientation tests: 2D point-to-triangle, 2D point-to-circle, 3D point-
to-sphere, and 3D point-to-plane. All geometric primitives take a sequence of
floating-point coordinates in the range [−100, 100) as input. Their output is a
boolean value indicating the relationship between geometric objects, which is
also our chosen signature.

4.2 GRT Benchmarks

Variance Calculation: We implemented the näıve variance calculation, which
is known to suffer from catastrophic cancellation effects [23]: var(X) = E[X2]−
(E[X])2. Here, X is a random floating-point variable in the range [−100, 100)
and var(X) is its variance. The post-condition states that the computed variance
must be non-negative, and is captured with the signature var(X) ≥ 0.

Exclusive Prefix Sum: The procedure takes an array X1, . . . , XN as input,
and outputs a sequence of summations Y1, . . . , YN such that Y1 = 0 and Yi =∑i−1

k=1 Xk for 2 ≤ i ≤ N . If all input values are non-negative, exclusive prefix sum
must output a monotonically increasing sequence. We implemented the näıve and
two-phase scan [17] algorithms. We provide them with a sequence of floating-
point values in the range [0, 100) as input. Given output values Y1, . . . , YN , the
post-condition is directly described in the signature function as:
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(Y2 ≥ Y1) ∧ (Y3 ≥ Y2) ∧ . . . ∧ (YN ≥ YN−1). (2)

Standard and Approximate Sorting: These benchmarks bubble-sort a
sequence of N floating-point values obtained using a procedure that introduces
round-off errors. More specifically, we generate each value in the sequence to
be sorted by summing over N floating-point values in the range [−100, 100).
Standard sorting judges the output sequence as correct when it is strictly non-
decreasing, whereas approximate sorting allows for a bounded degree of mis-
orderings, defined as follows. Given an unsorted input X = X1, . . . , XN and a
sorted output Y = Y1, . . . , YN , let Z = Z1, . . . , ZN be the permutation vector.
For example, if X = 〈7, 6, 8, 5〉 and Y = 〈5, 6, 7, 8〉, then Z = 〈3, 2, 4, 1〉. Let
ZF be the permutation vector under floating-points and ZR under reals. We
define the degree of misorderings dmis as the mean-square of ZR − ZF . Then,
our post-condition for approximate sorting is dmis ≤ √

N . For standard sort-
ing, our post-condition is Y1 ≤ Y2 ≤ . . . ≤ YN . We define a common signature
function as Eq. 2.

For both types of sorting we use the above conjunctive signature. Hence, sig-
nature violations do not necessarily lead to post-condition violations for approx-
imate sorting. Thus, an additional divergence check dmis <

√
N is required to

confirm the inputs violating the differential contract. We call this additional
divergence check an externally specified contract.

4.3 ABS Results

Table 1a shows our experimental results for ABS. Each run of ABS can restart
multiple times to find an initial pair of points. All our experiments were per-
formed on a machine with 12 Intel Xeon 2.40 GHz CPUs and 48 GB RAM.
(We currently use only one processor of this multi-processor machine; paral-
lelizing ABS and GRT is future work). We measure the efficiency of ABS using
the number of inputs enumerated to trigger the first divergence within 30 min.
To measure scalability, we experiment with large program inputs (thousands
of input variables). Our experiments show that ABS efficiently detects diver-
gences by enumerating just a few hundreds of inputs even for large input sizes.
Furthermore, ABS usually restarts only a few times to find initial end points.

Discussion: As expected of dynamic analysis techniques that need to repeatedly
execute programs, practical efficiency of our divergence detection methods is
related to execution times of programs under test. For example, simple convex
hull is an O(N3) algorithm, and its execution time becomes very long for large
input sizes. Hence, ABS detected only 6 divergences over 10 runs for Conv. hull
simple with 2000 input variables. When given extra time, more runs of ABS
successfully detect divergences: Conv. hull simple (1 h)/(2 h) in Table 1a denotes
the result of running ABS for 1/2 hour(s).

ABS uses random search to find initial end points (see Algorithm1), but
programmers can provide hints to facilitate search. For our shortest path bench-
mark with input size of 2450, ABS failed to detect divergences in all runs since it
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Table 1. Experimental results. ISize is the input size (i.e., the number of input floating-
point values); SRate is the number of divergences detected in ten runs (each run either
finds a divergence or timeouts after 30 min); Samples is the average number of inputs
enumerated to trigger the first divergence, computed over runs that successfully found
one (N/A denotes experiments that fail in all runs); RT is the number of divergences
triggered using 1 million random inputs; Restarts is the average number of restarts
over 10 runs of ABS.

Benchmark ISize SRate Samples Restarts RT

Conv. hull simple
200 10/10 3.21e+2 0.2 0
2000 6/10 3.66e+2 0 N/A

Conv. hull
simple (1 hr.)

2000 9/10 4.61e+2 0 N/A

Conv. hull
simple (2 hr.)

2000 10/10 5.16e+2 0 N/A

Conv. hull
incremental

200 10/10 2.65e+2 0.1 0
2000 10/10 5.60e+2 0.1 0

Conv. hull
quick-hull

200 10/10 3.03e+2 0.1 0
2000 10/10 4.68e+2 0.2 0

Conv. hull
Graham

200 10/10 2.26e+2 0.0 0
2000 10/10 6.09e+2 0.2 1

Shortest path
90 10/10 2.43e+2 5.7 0

2450 0/10 N/A N/A 0
Shortest path
with manual hint

2450 10/10 1.27e+2 2.4 0

Line × Adjacent
Triangles

18 10/10 8.19e+2 15.7 0

Line × Adjacent
Triangles 18 10/10 6.24e+2 5.5 0
with manual hint

Tri. intersection 12 10/10 3.86e+1 0.3 0

Pt. triangle 8 10/10 8.43e+1 1.2 0

Pt. plane (3x3) 12 10/10 5.02e+1 0.7 0
Pt. plane (4x4) 12 10/10 6.11e+1 1.0 1

Pt. circle (3x3) 8 10/10 2.64e+1 0 0
Pt. circle (4x4) 8 10/10 3.70e+1 0.3 0

Pt. sphere (4x4) 15 10/10 3.05e+1 0.1 1
Pt. sphere (5x5) 15 10/10 3.33e+1 0.2 1

(a) Experimental Results for ABS

Benchmark ISize SRate Samples RT

Variance est.
1000 10/10 1.28e+3 0
10000 10/10 6.10e+2 0

Näıve scan
(single)

1024 10/10 2.55e+3 0
8192 10/10 1.03e+3 0

Näıve scan
(multi)

1024 0/10 N/A 0
8192 0/10 N/A 0

Two-phase scan

(single)
1024 0/10 N/A 0
8192 0/10 N/A 0

Two-phase scan

(multi)
1024 0/10 N/A 0
8192 0/10 N/A 0

Standard sorting

(single)
4096 10/10 7.25e+2 70
10000 10/10 2.42e+2 220

Standard sorting

(multi)
4096 10/10 5.08e+2 70
10000 10/10 1.19e+2 220

Approx. sorting

(single)
4096 9/10 2.15e+4 0
10000 7/10 2.06e+4 0

Approx. sorting

(multi)
4096 10/10 4.63e+3 0
10000 10/10 1.89e+3 0

(b) Experimental Results for GRT. The
two-phase scan is divergence-free. The
results of the näıve scan and sorting
show the difference between selecting the
single-term (single) and the multi-term
(multi) objectives for optimization. The
random testing results are the same for
the two objectives.

failed to find initial end points: all randomly sampled inputs contained negative
cycles. However, it is easy to manually provide an input which does not contain
a negative cycle by assigning positive values to all edges’ weights. Using this
simple hint, ABS successfully detected divergences even in this case (see Short-
est path with manual hint in Table 1a). Applying manual hints also improves
ABS’s efficiency of divergence detection. For our intersection check benchmark,
we provided ABS with a manual hint causing different triangles to be intersected
by the line (see Line × Adjacent Triangles with manual hint in Table 1a). Com-
pared to the result that uses random search (see Line × Adjacent Triangles),
with the manual hint ABS spent fewer enumerations to detect divergences.

Weak Signature Functions: Both ABS and GRT expect signature func-
tions that satisfy Eq. 1. However, both methods could work even with signa-
ture functions that do not satisfy this equation. For example, for the convex hull
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102 103 104

Conv. hull Graham

Conv. hull quick-hull

Conv. hull incremental

Conv. hull simple

# Samples to the First Divergence

Weak Strong

Fig. 3. Comparison of Using Strong and Weak Signature Functions with ABS

benchmarks we used a signature function that generates a boolean vector record-
ing the point-orientation decisions made in the process of generating a convex
hull. We call such signature functions weak signature functions, while those satis-
fying the equation are strong signature functions. Figure 3 shows the comparison
between using the two types of signatures. The black bars indicate the usage of a
strong signature function (the number of the output hull vertices), and the white
bars the usage of a weak signature function (the decision sequence). The shorter
the bar, the fewer inputs enumerated by ABS were required to trigger the first
divergence, implying better efficiency of divergence detection. Our results show
that ABS can work with weak signature functions, but the efficiency is lower
than when using the strong ones.

4.4 GRT Results

Table 1b shows our experimental results for GRT. Benchmarks labeled with sin-
gle/multi denote the single-/multi-term objective applied to our optimizer (as
described in Sect. 3.2). The S3FP optimizer we use is an efficient tool for trig-
gering high round-off errors [9]. Note that the random testing results under both
objectives are the same because objective selection and random testing are inde-
pendent. GRT detects divergences in all our benchmarks except the two-phase
exclusive scan, which is expected since it is a divergence-free benchmark. The
results also suggest that GRT is scalable since it can handle large input sizes. It
is more efficient than random testing even for standard sorting. For example, for
the standard sorting with 256 input variables, GRT enumerates 5590 inputs on
average to trigger a divergence, while random testing needs over 300, 000 inputs.

Discussion: While our dynamic analysis methods can precisely detect diverging
inputs, they cannot establish divergence-freedom when divergence is not possi-
ble in any feasible execution. For example, even though two-phase scan is a
divergence-free algorithm when inputs are non-negative, we cannot infer that
solely because GRT did not detect a divergence. (We omit the proof in this
paper; it can be done by a simple induction). Automatically proving divergence-
freedom can be done using static analysis techniques [7], which is complementary
to our work.
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The results of the näıve scan and approximate sorting benchmarks indicate
that the GRT’s efficiency can be affected by optimization objective selection.
Applying the single-term objective to the näıve scan can successfully detect
divergences in all runs. On the other hand, applying the multi-term objective
resulted in no detected divergences. However, the results for the approximate
sorting show the opposite: applying the multi-term objective found more diver-
gences than the single-term objective (29 over 30 runs versus 20 over 30 runs).
As future work, we plan to explore heuristics for choosing a good optimization
objective.

4.5 Random Testing

To demonstrate efficiency, we compare our methods with random testing, which
is, to the best of our knowledge, the only divergence detection approach avail-
able to today’s designers. In all our experiments, we randomly generated one
million inputs for each input size, and column RT in Table 1 gives the number
of divergences detected. At most one divergence was triggered in most of the
benchmarks except the standard sorting. The results for Conv. hull simple with
the input size of 2000 are not available because the execution time is very high
(one million executions can take more than a week to finish). Our random testing
results suggest that divergence is very difficult to detect without applying good
search strategies such as ABS and GRT.

5 Related Work

In [7], the authors propose a verifier that attempts to prove that a set of user-
specified axioms (e.g., Knuth’s axioms for convex hulls [19]) cannot be violated
by any control-flow path in a piece of code. Their work does not address floating-
point directly; in fact, they treat all conditionals as non-deterministic selection
statements, which can be unrealistic. Also, devising axioms for new problems is
non-trivially hard. The scalability of their symbolic decision procedure is also in
doubt (tool unavailable), and it can also generate false alarms (our method does
not generate false alarms). Our approach is more practical, as it requires users
to provide discrete features, and not an axiomatic specification.

Runtime instability detection could also be used to detect divergence [1].
This work does not address the task of generating inputs that can quickly induce
divergence.

The authors of [16] propose a method for witnessing branch deviations across
platforms. Their targeting problem is similar to the problem described in [22],
and it is different from our targeting problem: witnessing discrete feature devi-
ations between floating-point and real computations (which is called divergence
in this paper). The key idea of their method is firstly using a SMT solver to find
a candidate input, and then searching close inputs around the candidate and
checking if any of them triggering a deviation. Our approach can address many
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practical scalability issues such as handling non-linear operations, and can be
applied with equal ease even when source codes are unavailable.

White-Box Sampling: White-box sampling [2] was proposed for finding dis-
continuous program behaviors. In this work, a program is seen as a composition
of continuous functions which have disjoint input domains. White-box sampling
tries to discover all continuous functions by finding at least one input for each
of their input domains. The approach of checking whether two inputs belong to
the same continuous function’s domain is by comparing the decision sequences
generated in the executions. A decision sequence is composed with floating-
point-decided discrete values, called discrete factors, like branch decision and
float-to-int type casting. Such discrete factor sequence can be one of the weak
signatures adopted by ABS (demonstrated in Sect. 4.3). Extracting discrete fac-
tor sequences from executions requires program instrumentation which is difficult
to apply to large-scale programs (e.g. programs invoke dynamic linked libraries).
However, ABS is not restricted to using discrete factor sequence as signature.
ABS can treat programs as black boxes and adopt signature functions which
directly observe program outputs.

Floating-Point Program Testing Methods and Dynamic Precision
Analysis: Both our divergence detection method and dynamic round-off error
estimation [9] are methods for testing floating-point programs. However, dynamic
round-off error estimation merely triggers high error on a given expression
while ABS and GRT automatically find inputs that cause divergence. We
can see the both divergence detection and round-off error estimation are two
methods for finding inputs triggering floating-point imprecision scenarios. The
inputs are important for dynamic floating-point analyses to avoid overly under-
approximating floating-point imprecision. Examples of dynamic floating-point
analyses which use concrete inputs to profile precision are catastrophic cancel-
lation detection [3], instability detection [1], auto-tuning [25], and synthesis [26].

6 Concluding Remarks

With the increasing pressure to reduce data movement, reducing floating-point
precision allocation is a necessity. Also, the increasing platform heterogeneity is
likely to increase the proclivity for program divergence — a definite impediment
to achieving execution reproducibility. In this paper, we offer the first in-depth
study of divergence. Our experimental results suggest that our new heuristics,
namely ABS and GRT, are capable of handling many practical examples with well
over 1000 inputs by quickly guiding input generation to locate divergence. For our
future work, we plan to study heterogeneity-induced divergence scenarios.
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Abstract. Constraint solving and satisfiability checking play an impor-
tant role in various tasks such as formal verification, software analysis
and testing. In this paper, we identify a particular kind of constraints
called ordering constraints, and study the problem of deciding satisfia-
bility modulo such constraints. The theory of ordering constraints can
be regarded as a special case of difference logic, and is essential for many
important problems in symbolic analysis of concurrent programs. We
propose a new approach for checking satisfiability modulo ordering con-
straints based on the DPLL(T) framework, and present our experimental
results compared with state-of-the-art SMT solvers on both benchmarks
and instances of real symbolic constraints.

1 Introduction

In the past decade, constraint solving and satisfiability checking techniques and
tools have found more and more applications in various fields like formal meth-
ods, software engineering and security. In particular, Satisfiability Modulo The-
ories (SMT) solvers play a vital role in program analysis and testing. This work
is motivated by the increasingly important use of SMT solving for symbolic
analysis of concurrent programs.

It is well-known that concurrent programs are error-prone. Analyzing con-
current programs has been a big challenge due to subtle interactions among the
concurrent threads exacerbated by the huge thread scheduling space. Among the
broad spectrum of concurrency analysis techniques, symbolic analysis is probably
the most promising approach that has attracted significant research attention
in recent years [7,9,16–18,20,23,25,27,30]. Generally speaking, it models the
scheduling of threads as symbolic constraints over order variables correspond-
ing to the execution order of critical operations performed by threads (such as
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shared data accesses and synchronizations). The symbolic constraints capture
both data and control dependencies among threads such that any solution to
the constraints corresponds to a valid schedule.

A key advantage of symbolic analysis is that it allows reasoning about thread
schedules with the help of automated constraint solving. By encoding interesting
properties (such as race conditions) as additional constraints and solving them
with a constraint solver, we can verify if there exists any valid schedule that can
satisfy the property. Such an approach has been used for finding concurrency
bugs such as data races [18,25], atomicity violations [30], deadlocks [7], null
pointer executions [9], etc., and has also been used to reproduce concurrency
failures [20,23], to generate tests [8], and to verify general properties [16,17]. In
our prior work [18], we developed a tool called RVPredict, which is able to detect
data races based on symbolic analysis of the program execution trace.

Despite its huge potential, symbolic analysis has not been widely adopted
in practice. The main obstacle is the performance of constraint solvers. For real
world applications, the size of complex constraints can be extremely large that
is very challenging for existing SMT solvers to solve. For example, for data race
detection in RVPredict, the number of constraints is cubic in the trace size, which
can grow to exascale for large programs such as Apache Derby1, the traces of
which contain tens of millions of critical events [18]. We provide an illustrative
example for RVPredict in Sect. 2.

To improve the scalability of symbolic analysis for analyzing concurrent pro-
grams, we need highly efficient constraint solvers. Fortunately, we note that the
symbolic constraints in many problems [9,16–18,20,23,25] take a simple form.
Each constraint consists of conjunctions and disjunctions of many simple Boolean
expressions over atomic predicates which are just simple ordering comparisons.
An example is: O1 < O2∧O3 < O4∧(O2 < O3∨O4 < O1). Here each variable Oi

denotes the occurrence of an event; and the relation Oi < Oj means that event
ei happens before event ej in certain schedules. A constraint like this is called
an ordering constraint (OC). The relational operator could also be ≤, ≥, etc.
However, the specific value difference between variables is irrelevant, because
in many applications we do not concern about the real-time properties among
events. Therefore, to solve ordering constraints, it is not necessary to use the
full (integer) difference logic (DL), which is the most efficient decision procedure
used by existing solvers for OC.

In this paper, we study properties and decision procedures for ordering con-
straints (OCs). The theory of ordering constraints is a fragment of difference
logic, which can be decided by detecting negative cycles in the weighted digraph.
However, we find that detecting negative cycles is not essential to the consis-
tency checking of ordering constraints. In fact, the problem is closely related
to the decomposition of a digraph into its strongly connected components.
Based on Tarjan’s strongly connected components algorithm, we propose a lin-
ear time decision procedure for checking satisfiability of ordering constraints,
and investigate how to integrate it with the DPLL(T) framework. We have also

1 http://db.apache.org/derby/.
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initially x=y=0 resource z=0
Thread t1 Thread t2
1. fork t2
2. lock l

3. x = 1
4. y = 1
5. unlock l

6. { //begin
7. lock l
8. r1 = y
9. unlock l

10. r2 = x
11. if (r1 == r2)
12. z = 1 (auth)
13. } //end

14. join t2
15. r3 = z (use)
16. if (r3 == 0)
17. Error

Fig. 1. An example with a race (3,10).

initially x = y = z = 0
1. fork(t1, t2)
2. lock(t1, l)
3. write(t1, x, 1)
4. write(t1, y, 1)
5. unlock(t1, l)

6. begin(t2)
7. lock(t2, l)
8. read(t2, y, 1)
9. unlock(t2, l)
10. read(t2, x, 1)
11. branch(t2)
12. write(t2, z, 1)
13. end(t2)

14. join(t1, t2)
15. read(t1, z, 1)
16. branch(t1)

Fig. 2. A trace corresponding to the
example

developed a customized solver for SMT(OC), and conducted extensive evalua-
tion of its performance compared with two state-of-the-art SMT solvers, Z3 [5]
and OpenSMT [3], on both benchmarks and real symbolic constraints from
RVPredict. Though not optimized, our tool achieves comparable performance
as that of Z3 and OpenSMT both of which are highly optimized. We present our
experimental results in Sect. 6.

The rest of the paper is organized as follows. We first provide a motivating
example to show how ordering constraints are derived from symbolic analysis
of concurrent programs in Sect. 2. We then formally define ordering constraints
and the constraint graph in Sect. 3 and present a linear time decision procedure
for OC in Sect. 4. We further discuss how to integrate the decision procedure
with the DPLL(T) framework to solve SMT(OC) formulas in Sect. 5.

2 Motivation

To elucidate the ordering constraints, let’s consider a data race detection problem
based on the symbolic analysis proposed in RVPredict [18].

The program in Fig. 1 contains a race condition between lines (3,10) on a
shared variable x that may cause an authentication failure of resource z at line
12, which in consequence causes an error to occur when z is used at line 15. Non-
symbolic analysis techniques such as happens-before [10], causal-precedes [28],
and the lockset algorithm [19,26] either cannot detect this race or report false
alarms. RVPredict is able to detect this race by observing an execution trace of
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the program following an interleaving denoted by the line numbers (which does
not manifest the race). The trace (shown in Fig. 2) contains a sequence of events
emitted in the execution, including thread fork and join, begin and end, read and
write, lock and unlock, as well as branch events.

The constructed symbolic constraints (shown in Fig. 3) based on the trace
consist of three parts: (A) the must happen-before (MHB) constraints, (B) the
locking constraints, and (C) the race constraints. The MHB constraints encode
the ordering requirements among events that must always hold. For example,
the fork event at line 1 must happen before the lock event at line 2 and the
begin event of t2 at line 6, so we have O1 < O2 and O1 < O6. The locking
constraints encode lock mutual exclusion consistency over lock and unlock events.
For example, O5 < O7 ∨ O9 < O2 means that either t1 acquires the lock l first
and t2 second, or t2 acquires l first and t1 second. If t1 first, then the lock at line
7 must happen after the unlock at line 5; otherwise if t2 first, the lock at line 2
should happen after the unlock at line 9.

The race constraints encode the data race condition. For example, for (3,10),
the race constraint is written as O10 = O3, meaning that these two events are
un-ordered. For (12,15), because there is a branch event (at line 11) before line
12, the control-flow condition at the branch event needs to be satisfied as well.
So the race constraint is written as O10 = O3 ∧ O3 < O10 ∧ O4 < O8, to ensure
that the read event at line 10 reads value 1 on x, and that the read event at line
8 reads value 1 on y. The size of symbolic constraints, in the worst case, is cubic
in the number of reads and writes in the trace.

Putting all these constraints together, the technique then invokes a solver
to compute a solution for these unknown order variables. For (3,10), the solver
returns a solution which corresponds to the interleaving 1-6-7-8-9-2-3-10, so
(3,10) is a race. For (12,15), the solver reports no solution, so it is not a race.

The symbolic constraints above are easy to solve, since the size of the trace
is small in this simple example. However, for real world programs with long
running executions, the constraints can quickly exceed the capability of existing
solvers such as Z3 [5] as the constraint size is cubic in the trace size. As a result,
RVPredict has to cut the trace into smaller chunks and only detects races in
each chunk separately, resulting in missing races across chunks. Hence, to scale
RVPredict to larger traces and to find more races, it is important to design
more efficient solvers that are customized for solving the ordering constraints.
Although we focus on motivating this problem with RVPredict, the ordering
constraints are applicable to many other concurrency analysis problems such as
replay [23], failure reproduction [20], concurrency property violation detection
[9,17], model checking [16], etc.

We next formalize the ordering constraints and present our algorithm to solve
this problem with a linear time decision procedure.

3 Preliminaries

Definition 1. An ordering constraint (OC) is a comparison between two
numeric variables. It can be represented as (x op y), where op ∈ {<,≤,
>,≥,=, �=}.

adrien.cassagne@inria.fr



SMT Solving for the Theory of Ordering Constraints 291

A. MHB

O1 < O2 < . . . < O5

O14 < . . . < O16

O6 < O7 < . . . < O13

O1 < O6 ∧ O13 < O14

B. Locking O5 < O7 ∨ O9 < O2

C. Race (3,10) O10 = O3

Race (12,15)
O15 = O12

O3 < O10 ∧ O4 < O8

Fig. 3. Symbolic constraints of the
trace

Fig. 4. Example 1

The theory of ordering constraints is a special case of difference logic, where
the constant c in the difference theory atom ((x − y) op c) is restricted to 0.

Definition 2. An SMT formula φ over ordering constraints, i.e., an
SMT(OC) formula, can be represented as a Boolean formula PSφ(b1, . . . , bn)
together with definitions in the form: bi ≡ x op y, where op ∈ {<,≤, >,≥,=, �=}.
That means, the Boolean variable bi stands for the ordering constraint (x op y).
PSφ is the propositional skeleton of the formula φ.

Without loss of generality, we can restrict the relational operators to < and
≤. In other words, the problem at hand is a Boolean combination of atoms of
the form x < y or x ≤ y.

A set of ordering constraints can be naturally represented with a directed
graph.

Definition 3. Given a set of ordering constraints, the constraint graph of
the ordering constraints is a digraph G = {V,E} which is constructed in the
following way:

1. For each variable xi, introduce a vertex vi ∈ V .
2. For each constraint xi < xj, introduce an edge e<

i,j ∈ E from vi to vj.
3. For each constraint xi ≤ xj, introduce an edge e≤

i,j ∈ E from vi to vj.

Definition 4. The out-degree of a vertex v of digraph G is the number of edges
that start from v, and is denoted by outdeg(v). Similarly, the in-degree of v is
the number of edges that end at v, and is denoted by indeg(v).

Example 1. Consider a set of ordering constraints: {x1 < x2, x2 ≤ x3, x3 ≤
x4, x4 ≤ x3}. Figure 4 shows the constraint graph constructed by Definition 3.
The variables {x1, x2, x3, x4} are represented by the nodes {v1, v2, v3, v4},
respectively, and outdeg(x3) = 1 and indeg(x3) = 2.

Recall that difference logic also has a graph representation. A set of difference
arithmetic atoms can be represented by a weighted directed graph, where each
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node corresponds to a variable, and each edge with weight corresponds to a dif-
ference arithmetic atom. Obviously the constraint graph of ordering constraints
can be viewed as a special case of that of difference logic, where all weights can
only take two values. The distinction between ordering constraints and difference
logic seems to be slight. However, in the rest of the paper we will show how this
minor difference leads to a new decision procedure with lower time complexity.

4 The Decision Procedure for Ordering Constraints

It is well known that DL can be decided by detecting negative cycles in the
weighted directed graph with the Bellman-Ford algorithm [24]. The complexity
of the classical decision procedure for DL is O(nm), where n is the number of
variables, and m is the number of constraints. As a fragment of difference logic,
ordering constraints can be directly checked with the aforementioned algorithm.
However, through exploring the structure of the constraint graph of ordering
constraints, we observe that detecting negative cycles is not essential to the
consistency checking of OC. In this section, we propose a new way to check the
inconsistency of OC, which needs only to examine the constraint graph in linear
time.

Before presenting the decision procedure for OC, we first introduce some
theoretical results on OC and its constraint graph.

Lemma 1. If digraph G has no cycle, then G has a vertex of out-degree 0 and
a vertex of in-degree 0.

Proof. We prove this lemma via reduction to absurdity. Assume for each vertex
v of G, outdeg(v) > 0. Let v1 be a vertex in V . Since outdeg(v1) > 0 by the
assumption, there exists an edge e1 which starts from v1 and ends at v2. Since
outdeg(v2) > 0, there exists an edge e2 which starts from v2 and ends at v3,
and so on and so forth. In this way, we obtain an infinite sequence of vertices
{v1, . . . , vk, . . . }. Note that |V | is finite, there must exist a cycle in this sequence,
which contradicts the precondition that G has no cycle. The proof of case of in-
degree is analogous.

Lemma 2. Given a set of ordering constraints α, if its constraint graph G has
no cycle, then α is consistent.

Proof. Based on the acyclic digraph G, we construct a feasible solution to the
variables of α in the following way:

(1) Set i = 0, and G0 = G.
(2) Find the set V ′

i of vertices of in-degree 0 in Gi = (Vi, Ei). For each vertex vt

in V ′
i , let the corresponding variable xt = i.

(3) Let E′
i = {e|e ∈ Ei and e starts from a vertex in V ′

i }. Construct the sub-
graph Gi+1 of Gi by Gi+1 = (Vi+1, Ei+1) = (Vi − V ′

i , Ei − E′
i).

(4) Repeat step (2) and (3) until Gi is empty.
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We now show that this procedure terminates with a solution that satisfies α.
Note that G is acyclic and each Gi is a subgraph of G, so Gi is acyclic. According
to Lemma 1, we have |V ′

i | > 0 every time the iteration reaches step (2). Therefore,
this procedure will terminate.

Consider two adjacent vertices vp and vq with an edge 〈vp, vq〉. As long as vp

remains in the current graph Gi, indeg(vq) > 0. Hence vp must be deleted earlier
than vq, and we have xp < xq. In general, for an arbitrary pair of vertices (vp

and vq), if there exists a path from vp to vq, namely 〈vp, vp1 , . . . , vpk
, vq〉, then

we have xp < xp1 < · · · < xpk
< xq ⇒ xp < xq.

Theorem 1. Given a set of ordering constraints α and its constraint graph G, α
is inconsistent if and only if there exists a maximal strongly connected component
of G that contains an e< edge.

Proof. ⇐= Let G′ be a maximal strongly connected component of G which
contains an e< edge 〈v1, v2〉. Since v1 and v2 are reachable from each other,
there exists a path from v2 to v1 in G′. Without loss of generality, we assume
the path is {v2, . . . , vn, v1}. The path and the edge 〈v1, v2〉 form a cycle in G′,
which implies that x1 < x2 ≤ · · · ≤ xn ≤ x1. Thus x1 < x1, and α is inconsistent.

=⇒ We prove this via reduction to absurdity. Suppose every maximal
strongly connected component of G does not contain an e< edge. Consider
an arbitrary pair of vertices vp and vq that are reachable from each other.
Since vp and vq belong to a maximal strongly connected component, there only
exist e≤ edges in the path from vp to vq, then xp ≤ xq. On the other hand,
we have xp ≥ xq. As a result, xp = xq. Let Gs = (Vs, Es) be a maximal
strongly connected component of G. We could merge vertices of Vs into one
vertex v and obtain a new graph G′ = (V ′, E′), where V ′ = (V − Vs) ∪ {v} and
E′ = {〈vi, vj〉|〈vi, vj〉 ∈ E, vi �∈ Vs, vj �∈ Vs} ∪ {〈v, vj〉|〈vi, vj〉 ∈ E, vi ∈ Vs, vj �∈
Vs} ∪ {〈vi, v〉|〈vi, vj〉 ∈ E, vi �∈ Vs, vj ∈ Vs}. In addition, x = xi,∀vi ∈ Vs.
Consider the following way to construct a solution to α. For each maximal
strongly connected component of G, we merge it into a vertex and finally obtain
G′ = (V ′, E′). Note that such G′ is unique and acyclic. We could construct a
solution from G′ by Lemma 2.

We now show the solution constructed by this procedure satisfies α. That is,
for each pair of vertices (vp, vq), if there exists a path from vp to vq, then xp ≤ xq.
Furthermore, if there exists an e< edge in a path from vp to vq, then xp < xq.
Let vp and vq map to v′

p and v′
q of G′. If v′

p = v′
q, then xp = x′

p = x′
q = xq.

Otherwise, there exists a path from v′
p to v′

q. By Lemma 2, xp = x′
p < x′

q = xq.
Hence xp ≤ xq always holds. If there exists an e< edge in a path from vp to vq,
then vp and vq cannot be in the same maximal strongly connected component.
Therefore, v′

p �= v′
q ⇒ xp < xq. It can be concluded that α is consistent since the

solution satisfies the constraints of α.

Example 2. Recall in Example 1 that there are 3 strongly connected components
{{v1},{v2},{v3,v4}}. If we add a constraint x3 ≤ x1, the resulting constraint
graph is shown in Fig. 5. There is only one strongly connected component, which
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Fig. 5. Example 2 Fig. 6. Example 3

itself is a connected graph. Since 〈v1, v2〉 is an e< edge, the conjunction of order-
ing constraints is inconsistent by Theorem 1. The conflict x1 < x1 can be drawn
from {x1 < x2, x2 ≤ x3, x3 ≤ x1}.

Theorem 1 suggests that, to check the consistency of ordering constraints, we
can decompose its constraint graph into maximal strongly connected components
and then examine the edges. We use Tarjan’s algorithm [29] to find the max-
imal strongly connected components in our ordering constraints theory solver.
It produces a unique partition of the graph’s vertices into the graph’s strongly
connected components. Each vertex of the graph appears in exactly one of these
components. Then we check each edge in these components whether it is an e<

edge. Therefore the consistency of conjunctions of ordering constraints can be
decided in O(n + m) time.

5 Integrating DPOC into DPLL(T)

5.1 The DPLL(T) Framework

DPLL(T) is a generalization of DPLL for solving a decidable first order
theory T . The DPLL(T) system consists of two parts: the global DPLL(X) mod-
ule and a decision procedure DPT for the given theory T . The DPLL(X) part
is a general DPLL engine that is independent of any particular theory T [13].
It interacts with DPT through a well-defined interface. The DPLL(T) frame-
work is illustrated in Fig. 7. We assume that the readers are familiar with DPLL
components, such as Decide, BCP, Analyze and Backtrack. The component TP
represents theory propagation, which is invoked when no more implications can
be made by BCP. It deduces literals that are implied by the current assignment in
theory T , and communicates the implications to the BCP part. Although theory
propagation is not essential to the functionality of the solving procedure, it is
vital to the efficiency of the procedure. The component Check encapsulates the
decision procedure DPT for consistency checking of the current assignment. If
inconsistencies are detected, it generates theory-level minimal conflict clauses.

5.2 Theory-Level Lemma Learning

We now discuss how to integrate the decision procedure DPOC into the DPLL(T)
framework. In DPLL(T), the decision procedure is called repeatedly to check the
consistency of (partial) assignments. To avoid frequent construction/destruction
of constraint graphs, at the beginning of the solving process, we construct the
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Fig. 7. The DPLL(T) Framework

constraint graph G of the set of all predicates in the target SMT(OC) formula.
In this graph, each edge has two states: an edge is active if its corresponding
boolean variable is assigned a value (true, false); and is inactive if its corre-
sponding boolean variable is undefined.

Notice that initially all edges are inactive. When the solver finds a partial
assignment α, the edges in G corresponding to α are activated. Hence the con-
straint graph Gα of the ordering constraints of α consists of every active edge in
G, and is a subgraph of G. The decision procedure DPOC checks the consistency
of α based on Gα.

Example 3. Consider a formula PSφ(b1, b2, b3, b4, b5) = (b1∧(¬b2)∧(b3∨b4∨b5)),
{b1 ≡ x1 < x2, b2 ≡ x3 < x2, b3 ≡ x3 ≤ x4, b4 ≡ x4 ≤ x3, b5 ≡ x3 ≤
x1}. Figure 6 shows the constraint graph Gβ of all predicates in this formula
with a possible partial assignment β, {b1 = True, b2 = False, b3 = True, b4 =
True, b5 = Undefined}. Note that {〈v1, v2〉, 〈v2, v3〉, 〈v3, v4〉, 〈v4, v3〉} are active
and 〈v3, v1〉 is inactive. Actually, the graph of Example 1 is a subgraph of Gβ ,
which can be constructed by choosing all active edges in Gβ .

To maximize the benefits of integration, the OC solver should be able to
communicate theory lemmas to the SAT engine, including conflict clauses and
deduction clauses at the OC theory level. We next discuss two such techniques.

Minimal Conflict Explanation. According to Theorem 1, the OC solver
detects an inconsistency of the current assignment if it finds an e< edge in a
strongly connected component of the constraint graph G. Without loss of gener-
ality, we assume the e< edge is e = 〈v1, v2〉, and denote the strongly connected
component by G′. The inconsistency is essentially caused by a cycle that con-
tains e. Note that all paths from v2 to v1 are in G′. Hence we only have to find a
shortest path from v2 to v1 in G′ instead of G. The shortest path from v2 to v1

and the edge e = 〈v1, v2〉 form a shortest cycle with an e< edge, corresponding to
the minimal conflict that gives rise to the inconsistency. Therefore, we generate
theory-level conflict clauses according to such cycles.
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Algorithm 1. Tarjan’s Algorithm Combined With Theory Propagation
Tarjan() initialize v, S, index, scc;
for each v that v.index is undefined in V do

Tarjan DFS(v);

Tarjan DFS(v) v.index, v.lowlink ← index, index ← index + 1, S.push(v);
for each active edge 〈v, w〉 in E do

if w is not visited then
w.father ← v;
if 〈v, w〉 is an e< edge then

w.nf ← v.nf + 1;
else

w.nf ← v.nf;

Tarjan DFS(w);
v.lowlink ← min(v.lowlink, w.lowlink);

else if w in S then
v.lowlink ← min(v.lowlink, w.index);

if v.lowlink = v.index then
repeat

s, t ← S.pop(), s.scc ← scc;
while t.father is defined do

t ← t.father;
if (〈s, t〉 or 〈t, s〉 is inactive) and (s.nf > t.nf or 〈s, t〉 is an e<

edge) then
generate TP clause from s to t by father vertex records;

until (s = v);
scc ← scc + 1;

Theory Propagation. In order to improve performance, we apply a “cheap”
theory propagation technique. Our theory propagation is combined with the
consistency check to reduce its cost. However, it is an incomplete algorithm.

Algorithm 1 is the pseudocode of the whole consistency check procedure. It
is mainly based on the Tarjan algorithm on the graph G′ = (V, active(E)). Like
the original Tarjan algorithm, the index variable counts the number of visited
nodes in DFS order. The value of v.index numbers the nodes consecutively in
the order in which they are discovered. And the value of v.lowlink represents
the smallest index of any node known to be reachable from v, including v itself.
The scc variable counts the number of strongly connected components. And the
attribute scc of a vertex records the strongly connected component it belongs
to. S is the node stack, which stores the history of nodes explored but not yet
committed to a strongly connected component.

We introduce two values for a vertex v, v.father and v.nf, for theory propaga-
tion. The value of v.father represents a vertex w, that the DFS procedure visits
v through edge 〈w, v〉. Assume the DFS procedure starts from vertex u. Then
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Fig. 8. Experiments on instances generated from RVPredict

we can generate a path from u to v by retrieving the father attribute of each
vertex on this path from v. The number of e< edges on this path is recorded by
v.nf. We add two parts into the original Tarjan algorithm. In Algorithm 1, the
statements from line 7 to line 12 record the “father” and the “nf” attribute of
w. The loop from line 23 to line 27 recursively checks the vertex t by retriev-
ing father records from s. We can obtain a path pts from t to s in this way. If
t.nf<s.nf, there exists at least one e< edge on this path. Thus pts and edge st
compose a negative cycle if t.nf<s.nf or st is an e< edge. We can determine the
assignment of the Boolean variable which corresponds to the edge ts or st and
generate the Boolean clause of this deduction.

In Example 3, our algorithm starts from v1, and then applies a DFS proce-
dure. When the algorithm visits the last vertex, v4, we have v4.nf = v3.nf =
v2.nf = v1.nf + 1. Then the algorithm starts popping stack S and constructing
strongly connected components. At vertex v3, we find v1 is the father of v3.father,
〈v3, v1〉 is inactive and v3.nf > v1.nf, so we deduce that b5 ≡ 〈v3, v1〉 should be
False and generate a clause, (¬b1) ∨ b2 ∨ (¬b5).

6 Experimental Evaluation

We have implemented our decision procedure in a tool called COCO (which stands
for Combating Ordering COnstraints) based on MiniSat 2.02. We have evaluated
COCO with a collection of ordering constraints generated from RVPredict and two
series of QF IDL benchmarks (diamonds and parity) in SMT-Lib3, which are
also SMT(OC) formulas. The experiments were performed on a workstation
with 3.40 GHz Intel Core i7-2600 CPU and 8 GB memory. For comparison, we
also evaluated with two other state-of-the-art SMT solvers, i.e., OpenSMT4 and
Z35. The experimental results are shown in Figs. 8 and 9. Note that each point
represents an instance. Its x-coordinate and y-coordinate represent the running
2 N. Eén and N. Sörensson. The MiniSat Page. http://minisat.se/.
3 They are available at: http://www.cs.nyu.edu/∼barrett/smtlib/.
4 The OpenSMT Page. http://code.google.com/p/opensmt/.
5 The Z3 Page. http://z3.codeplex.com/.
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Table 1. More details about the “Hard” instances.

Instance OpenSMT COCO Z3

Name Dims TS sat

calls

TS unsat

calls

Time(s) TS sat

calls

TS unsat

calls

Time(s) Time(s)

Harness 1 19783 40460 1 9.489 21664 12775 59.768 —

Harness 2 19783 41278 1 9.929 18703 12011 50.937 —

JigsawDriver 3 1548 5796 0 0.892 12797 15604 10.447 10.549

JigsawDriver 7 1548 6198 0 0.848 997 1671 0.538 8.813

BubbleSort 3 1195 36989 71 0.868 47643 52508 30.708 15.761

JGFMolDynA 1 7718 11448 0 3.028 3 17 0.074 2.64

JGFMolDynA 2 7718 12914 4 2.972 2214 3181 2.522 748.207

BoundedBuffer 39 828 5640 1 0.500 787 1109 0.312 1.196

BoundedBuffer 40 828 11464 47 0.444 2621 2924 0.830 1.360

BoundedBuffer 41 828 5537 1 0.500 3256 3327 1.252 1.640

main 15 9707 12882 1 3.228 2132 2122 2.184 158.214

times of COCO and Z3/OpenSMT on this instance, respectively. All figures are in
logarithmic coordinates.

Figure 8 shows the results on instances that are generated from RVPredict.
Our tool performs well on some small instances. It takes dozens of milliseconds for
COCO to solve them. Z3 usually consumes more time and memory than COCO, and
it fails to solve some large instances, due to the limit on memory usage. For such
instances, we regard the running time of Z3 as more than 3600 s. Nevertheless, on
some larger instances OpenSMT is more efficient. Our investigation of OpenSMT
reveals that it adopts an efficient incremental consistency checking algorithm
and integrates minimal conflict with a theory propagation technique, which COCO
currently does not fully support. The advantage of theory propagation is that it
allows the solver to effectively learn useful facts that can help reduce the chances
of conflicts. On the instances generated from RVPredict, theory propagations are
very effective, because the Boolean structures of the SMT(OC) formulas are
quite simple.

Table 1 gives more details on some “hard” instances in Fig. 8. “TS sat calls”
and “TS unsat calls” represent the number of satisfiable/unsatisfiable calls of
the theory solver, respectively. “Dims” denotes the number of numeric variables,
i.e., dimension of the search space. The running times of both OpenSMT and COCO
are closely related to the dimension of the instance and the number of calls of the
theory solver. An unsatisfiable call of the theory solver causes backtracking and
retrieving reasons; so it consumes much more time than a satisfiable call. Notice
that OpenSMT hardly encounters unsatisfiable calls. Its theory propagation pro-
cedure greatly reduces the number of unsatisfiable calls. On the contrary, COCO
even encounters more unsatisfiable calls than satisfiable calls in some circum-
stances, because its theory propagation is incomplete.

Figure 9 shows the experimental results on SMT-Lib benchmarks “diamonds”
and “parity”. It appears that OpenSMT is often slower than COCO, and Z3
performs well in these cases, in contrast to Fig. 8. OpenSMT only applies the
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incremental algorithm which cannot skip steps, so it checks consistency incre-
mentally whenever it makes decision or propagation. On instances that contain
complicated Boolean components, like some SMT-Lib benchmarks, OpenSMT is
not so efficient, because it has to backtrack often and applies the consistency
checking algorithm step by step again even with complete theory propagations.
On the other hand, Z3 tightly integrates many strategies, some of which are hand-
crafted and fall outside the scope of DPLL(T), such as formula preprocessing,
which COCO does not implement. These may be the reasons for the good perfor-
mance of Z3 in Fig. 9.

In addition to the running time, we also compared the memory usage of these
three solvers. It turned out that COCO always occupies the least memory. The
memory usage of OpenSMT is about 5 to 10 times as much as that of COCO, and
Z3 consumes tens of times even hundreds of times higher memories than COCO.
The detailed data are omitted, due to the lack of space.
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Fig. 9. Experiments on QF IDL benchmarks in SMT-Lib

To summarize, COCO achieves better scalability than Z3 on the real instances
generated by RVPredict. On the other hand, when comparing COCO with
OpenSMT, there seems no clear winner. The incremental decision procedure with
complete theory propagation enables OpenSMT to perform well on many instances
generated by RVPredict, whereas it results in poor performance of OpenSMT
on the classical SMT-Lib instances. Besides, our current tool has potential to
achieve better performance as we have not designed a complete theory propa-
gation, as demonstrated by OpenSMT, and many other optimization strategies
used by Z3.

7 Related Work

As we mentioned earlier, there has been a large body of work on solving (integer)
difference constraints. See, for example, [4,12,22,24]. Nieuwenhuis and Oliveras
presented a DPLL(T) system with exhaustive theory propagation for solving
SMT(DL) formulas [24]. They reduced the consistency checking for DL to detect-
ing negative cycles in the weighted digraph with the Bellman-Ford algorithm [24].
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The complexity of this decision procedure is O(nm), where n is the number of
variables, and m is the number of constraints. In [4] Cotton and Maler proposed
an incremental complete difference constraint propagation algorithm with com-
plexity O(m + nlogn + |U |), where |U | is the number of constraints which are
candidates for being deduced. However, to check the consistency of conjunctions
of constraints, the incremental algorithm has to be called for each constraint.
Therefore, the complexity of the whole procedure is even higher. In contrast, the
complexity of our decision procedure for ordering constraints is only O(n + m).

Besides, there are some works consider extending a SAT solver with acyclicity
detection. [21] deals with a conjunction of theory predicates, while our work is
concerned with arbitrary Boolean combinations of ordering constraints. Due to
the existence of the logical connectives (OR, NOT) of SMT(OC) formulas, the
equality and disequality relations can be represented by inequality relations.
We only have to consider two types of edges (e>= edge and e> edge) in our
graph, which is more simple than four types of edges in [21]. Moreover, our
theory propagation exploits the information from Tarjans algorithm. [14,15],
and recent versions of MonoSAT [2] all rely on similar theory propagation and
clause learning techniques. [2], for example, also uses Tarjan’s SCC during clause
learning in a similar way as this paper. However, they don’t have a notion of
e< edges versus e<= edges, and they couldn’t support distinction of e< edges
versus e<= edges without significant modifications.

8 Conclusion

Satisfiability Modulo Theories (SMT) is an important research topic in auto-
mated reasoning. In this paper, we identified and studied a useful theory, i.e.,
the theory of ordering constraints. We demonstrated its applications in sym-
bolic analysis of concurrent programs. We also presented methods for solving
the related satisfiability problems. In particular, we gave a decision procedure
that has a lower complexity than that for the difference logic. We have also
implemented a prototype tool for our algorithm and compared its performance
with two state-of-the-art SMT solvers, Z3 and OpenSMT. Although our current
implementation is not optimized, it achieves comparable performance as that
of Z3 and OpenSMT which have been developed for years and are highly opti-
mized. We explained why a particular tool is more efficient on certain problem
instances. In our future work, we plan to further improve the performance of
our approach by developing incremental and backtrackable decision procedures
with more efficient theory propagation.

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
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Abstract. Error Correction Code decoding algorithms for consumer
products such as Internet of Things (IoT) devices are usually implemented
as dedicated hardware circuits. As processors are becoming increasingly
powerful and energy efficient, there is now a strong desire to perform this
processing in software to reduce production costs and time to market. The
recently introduced family of Successive Cancellation decoders for Polar
codes has been shown in several research works to efficiently leverage the
ubiquitous SIMD units in modern CPUs, while offering strong potentials
for a wide range of optimizations. The P-EDGE environment introduced
in this paper, combines a specialized skeleton generator and a building
blocks library routines to provide a generic, extensible Polar code explo-
ration workbench. It enables ECC code designers to easily experiments
with combinations of existing and new optimizations, while delivering
performance close to state-of-art decoders.

Keywords: Error correction codes · Polar codes · Successive cancel-
lation decoding · Generic programming · Code generation · Domain
specific language · SIMDization

1 Introduction

Error correction coding aka channel coding is a technique that enables the
transmission of digital information over an unreliable communication channel.
In today’s communication systems, hardware digital circuits are in charge of
performing the encoding (resp. decoding) of transmitted (resp. received) infor-
mation. These custom Error Correction Code (ECC) circuits lack flexibility and
suffer from very long, expensive development cycles. In order to improve the
system flexibility and to reduce time to market, and as a consequence from
the strong performance increase of low power general purpose processors such
as found in IoT devices, researchers recently suggested implementing channel
decoders in software. Moreover, it is also much needed to be able to run such
c© Springer International Publishing Switzerland 2016
X. Shen et al. (Eds.): LCPC 2015, LNCS 9519, pp. 303–317, 2016.
DOI: 10.1007/978-3-319-29778-1 19
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algorithms on high end, high performance processors to shorten the compu-
tationally intensive algorithm validation process. During such a process, long
sequences of information are encoded with the studied algorithm, altered with
a controlled random noise, decoded, and compared with the initial sequence to
assess the error correcting power. Indeed, some classes of decoding algorithms
can take advantage of modern CPU features such as SIMD units, and even
many/multi-cores, making the software approach even more desirable.

In this paper, we focus on the software implementation of Successive Can-
cellation (SC) algorithm for a recent family of error correction codes: Polar
Codes [2]. As an alternative to hardware implementation, several recent software
implementations were proposed in the literature in order to demonstrate that
polar codes decoding can be efficiently implemented on a multi-core CPUs (x86,
ARM). These software implementations take advantage of various optimizations
that were first proposed for hardware implementations. However, depending on
the processor micro-architecture and instruction set, some optimization tech-
niques may not work equally on distinct processors. New optimization techniques
may be designed. Some optimization combinations may be less successful than
others. As a result, the optimization space of polar decoder implementations is
wide, and its exploration non trivial.

For this reason, we propose a new polar decoder experimentation framework
named P-EDGE (Polar ECC Decoder Generation Environment), which com-
bines a specializing skeleton generator with a building block library of elemen-
tary polar code processing routines. The algorithm-centric skeleton generator is
fully independent from the hardware architecture enabling high-level algorithmic
optimization to be implemented in a portable manner. The architecture-centric
building block library is fully independent from the generated skeleton instance,
enabling architecture porting effort and low-level routine optimization to be
concentrated on a small set of short functions. P-EDGE enables separation of
concerns between algorithmic and architecture optimizations. The panel of eval-
uation experiments we conducted shows the high flexibility of our framework.
The performance evaluation results we obtained, nearing and sometime outper-
forming state-of-the-art handwritten implementations, confirm that the benefit
from this high flexibility is not cancelled by an expensive penalty.

The remainder of this paper is organized as follows. Section 2 details the con-
text and relevant characteristics of the general polar code decoding process, as
well as the large optimization space resulting from its implementation. Section 3
presents our proposed framework as well as the architecture independent skeleton
generator. Section 4 provides implementation details on the architecture depen-
dent building blocks. Section 5 talks about the achieved related works in the
domain. Section 6 shows experiments and performance results. Section 7 con-
cludes the article.

2 Successive Cancellation Decoding of Polar Codes

Error correction codes are widely used in digital communication and data storage
applications. The encoding process consists in adding some redundant informa-
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tion (parity check bits) in order to strengthen the message against transmission
errors. On the receiver side, the decoder estimates the transmitted bits based on
(i) the received sequence and (ii) the knowledge of the encoding process. Polar
Codes were recently proposed in [2]. Similar to state of the art LDPC codes
[4,9] and Turbo codes [3], polar codes can achieve very good error correction
performance. However, a very large codelength (N > 220) is required in order
to approach to the theoretical error correction limit proved by Shannon [13].
The challenge is then to design polar codes decoders able to decode several mil-
lions bits frames while guaranteeing a compelling throughput. Assume we want
to transmit K bits over a noisy communication channel. The encoding process
appends N − K parity check bits before the resulting N bits codeword can be
transmitted over the channel. On the receiver side, the noisy sequence Y is a
vector of N real values each corresponding to a priori beliefs on the transmitted
bits. These beliefs are in the form of a Log-Likelihood-Ratio (LLR). Using the
knowledge of the encoding process, the decoder job is to estimate the transmitted
N -bit codeword based on a received sequence of N LLRs.

Fig. 1. (a) Tree layout. (b) Per-node downward and upward computations.

The SC decoding algorithm can be seen as the traversal of a binary tree start-
ing from the root node. For a codelength N = 2m, the corresponding tree thus
includes m+1 node layers, indexed from d = 0 (root node layer) down to d = m
(leaf nodes layers). As the tree is initially full, each layer d contains 2d nodes,
each node of that layer d containing 2m−d LLRs (λ) and 2m−d binary values
denoted as partial sums (s). At initialization, LLRs received from the channel
(Y ) are stored in the root node. Then, the decoder performs a pre-order traversal
of the tree. When a node is visited in the downward direction, LLRs of the node
are updated. In the upward direction, partial sums are updated. Figure 1b sum-
marizes the computations performed in both directions. The update functions
are:

⎧
⎨

⎩

λc = f(λa, λb) = sign(λa.λb).min(|λa|, |λb|)
λc = g(λa, λb, s) = (1 − 2s)λa + λb

(sc, sd) = h(sa, sb) = (sa ⊕ sb, sb).
(1)

The f and g functions both generate a single LLR. The h function provides a
couple of partial sums.
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Before recursively calling itself on the left node, the algorithm apply the f
function, respectively, before calling itself on the right node the g function is
applied. At the end (after the recursive call on the right node) the h function is
applied. The f and g functions use the LLRs (read only mode) from the current
node ni in order to produce the new LLR values into respectively left and right
ni+1 nodes. The h function, in the general case (non-terminal case), reads the
bits from the left and right ni+1 nodes in order to update the bit values of the
ni node. For the terminal case, the h function reads the LLRs from itself and
decides the bit values.

Leaf nodes are of two kinds: information bit nodes and frozen bit nodes.
When a frozen bit leaf node is reached, its binary value is unconditionally set
to zero. Instead, when an information leaf node is reached, its binary value is
set according to the sign of its LLR (0 if LLR is positive, 1 otherwise). Once
every node in the tree has been visited in both directions, the decoder eventually
updates partial sums in the root node and the decoding process is terminated.
At this point, the decoding result is stored in the root node in the form of a
N -bit partial sum vectors.

2.1 Code Optimization Space

The previous decoder algorithm has a number of characteristics of interest for its
optimization. Generating decoders able to take advantage of this optimization
space is the key for high performance decoders:

– The tree traversal is sequential, but f , g and h are applied element-wise to
all elements of the LLR and bits in the nodes and their children. As there
is no dependence between computations involving different elements of the
same node, these node computations can be parallelized or vectorized (cf. the
intra-frame strategy introduced in [5]),

– Frozen bits fully define their leaf values, hence some part of the traversal can
be cut and its computation avoided, depending on the location of the frozen
bits. More generally, the tree computation can be versioned depending on
these bits (cf. [1,12]),

– The decoder can be specialized for a particular configuration of frozen bits,
as frozen bit locations do not change for many frames,

– Similarly, multiple frames can be decoded concurrently, with parallel or vector
code. Such inter-frame optimizations can increase the decoding throughput,
however at the expense of latency, which is also one important metric of the
application (cf. [8]).

Beside optimizations coming from the computations in the tree, several rep-
resentations of LLR may lead to different error correction performance. LLR for
instance can be represented by floats or integers (fixed point representation),
LLR from different frames can be packed together.

Finally, usual code optimizations, such as unrolling or inlining can also be
explored. For instance, the recursive structure of the tree computation can be
fully flatten, depending on the size of the codelength.
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3 The P-EDGE Framework

We now presents the framework we designed to study, experiment with, and opti-
mize the decoding of polar codes. While our contributions focus on the decoding
stage, a whole encoding/decoding chain is required for testing and validation
purpose, and we therefore give an overview of our communication chain.

Comm. Chan.Transmitter Receiver

UK XN YN VN

ChannelEncoderSource Decoder Sink

Fig. 2. The communication chain.

Figure 2 depicts the whole communication chain of our framework. The chain
stages are organized as the following main segments:

The Transmitter segment is made of two Stages: (1) The source signal gen-
erator stage (Source) produces the vector of information bits UK to be trans-
mitted. (2) The polar encoding stage (Encoder) inserts parity check redundancy
bits into information vector. For every packet of K information bits, a total of
N bits are produced (information+redundancy bits). The resulting N-bit vector
(XN ) is transmitted over the communication channel.

The Communication channel segment simulates a noisy communication,
adding additive white Gaussian noise to the frames, producing the real vector
YN from the binary vector XN .

The Receiver segment is made of two Stages: (1) The Decoder stage pro-
duces a binary vector VN from YN along using the algorithm described above.
(2) The Sink stage eventually compares the K information bits (VK) in VN with
UK in order to count the number of remaining binary errors after the decoding
is performed. The more effective the error correction code is, the closer the VK

bits should be from the UK bits. Resilient errors may come from (1) inherent
limitations in the polar code construction, (2) sub-optimal decoding algorithm,
(3) a high noise power in the communication channel. Moreover, while testing
new algorithm implementations or optimizations, an abnormally high error rate
can also be the sign of a bug.

3.1 The P-EDGE Decoder Generator

Specialized Decoder Skeletons and Building Blocks Library. The tree structure
at the heart of SC decoders is fully determined by the parameters of a given
code instance: the code size, the code rate (R = K/N), position of the frozen
bits. All these parameters are statically known at compile time. Thus, the recur-
sive tree traversal code structure and the corresponding tree data structure are
challenging to vectorize and to optimize for a compiler. Our Polar ECC Decoder
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Fig. 3. Subtree rewriting rules for processing specialization.

Generation Environment (P-EDGE) builds on this property to provide a general
framework for polar decoder design, generation and optimization. Beyond the
code parameters, Polar decoders can be tweaked and optimized in many differ-
ent orthogonal or loosely coupled ways: Elementary type (floating point, fixed
point), Element containers (array size), Data layout (bit packing techniques),
Instruction Set (x86, ARM), SIMD support (scalar, intra-frame or inter-frame
processing vectorization), SIMD instruction set variant (SSE, AVX, NEON),
as well as the set and relative priorities of the rewriting rules for tree pruning.
Our framework enables to quickly experiment the different combinations of all
optimizations. The decoder code thus results from two distinct parts:

– An architecture independent specialized decoder skeleton generated by our
decoder generator, from a given frozen bits location input. Starting from the
naive, recursive expression of the computational tree, we apply successively
cuts and specializations on the tree. They are described through a set of
rewriting rules, that can be customized according to the specificities of the
decoder and to the constraints in term of code size for instance.

– A library of architecture dependent elementary computation building blocks,
corresponding to the implementation variants of the f , g and h functions
(fixed or floating point versions, scalar or vector versions, ...). These blocks
do not depend on the frozen bits location and can therefore be used by any
specialized skeleton.

This separation of concerns between high-level specialized algorithmic skele-
tons and low-level arithmetic routines, enables both ECC experts to focus on
optimizing algorithm skeletons and architecture experts to focus on writing
highly optimized routines, without interferences.

Decoder Generation. The decoder generator first builds the binary tree structure
as shown in Fig. 1a from the frozen bit location input. Each internal node has
a tag indicating the type of processing required at that node (recursive children
processing, f/g/h functions to be applied or not). This tag is initially set to
standard, corresponding to the canonical processing described in Fig. 1b.

For some sub-tree pattern configurations, the processing to be performed
at the root of such sub-trees can be simplified, or even skipped completely,
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? ?

gr()

xor()

f()

xor()

gr()f()

SPCRep

Rate 0 Rate 1

Rep SPC

cut branch

Fig. 4. Generation process on a small binary tree (N = 8). The tree is cut and the
computations are versioned according to the location of the frozen bit. The final code
generated is in the right.

for instance when a node only has two frozen bit leaf children. To exploit such
properties, the decoder generator repeatedly applies the set of sub-tree rewriting
rules listed in Fig. 3 using a depth first traversal to alter the node tags, until no
rewriting rule applies anymore.

Each rewriting rule defines a subtree pattern selector, a new tag for the
subtree root, and the f , g, and h processing functions to be applied, simplified
or skipped for this node in the resulting decoder. A null f (resp. g) function cuts
the left (resp. right) child of the node. From an implementation point of view,
a rule is defined as a class, with a match function, and a set of functions f , g,
and h. The current set of rewriting rules can thus easily be enriched with new
rules to generate even more specialized versions.

Patterns on the first two rows result in cutting away both children. For
instance, the first rule, named Rate 0, leaf children, cuts the two frozen bit leaf
children of the parent node, and tag it as Rate 0 (white node). Processing is
completely skipped on this node since the values of the bits are unconditionally
known. The Repetition rules match subtrees where only the rightmost leaf is
black (tag Rate 1 ), the others being frozen bits. In this case, the whole subtree
is cut and replaced by a more simple processing. Moreover a single, specialized
rep function is applied on the node instead of the three functions f , g and h.
The third line describes partial cuts and specialization. For instance, the rule
“Repetition, left only” specializes the g and h functions to use, but does not
prune the recursive children processing.

Rewriting rules are ordered by priority (left to right, then top row to bottom
row in Fig. 3), thus if more than one rule match an encountered subtree, the
highest priority rule is applied. The priority order is chosen such as to favor
strongest computation reducing rules over rules with minor impact, and to ensure
confluence by selecting the most specific pattern first. Rules selectors can match
on node tags and/or node levels (leaf, specific level, above or below some level).
A given rule is applied at most once on a given node.

Finally, once the tree has been fully specialized, the generator perform a
second tree traversal pass to output the resulting decoder. An example of such a
tree specialization process together with the generator output is shown in Fig. 4.
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4 Low Level Building Blocks

The main challenge in implementing P-EDGE’s architecture dependent build-
ing blocks is to provide enough flexibility to enable varied type, data layout
and optimization strategies such as intra-frame SIMDization (intra-SIMD) and
inter-frame SIMDization (inter-SIMD), without breaking the high level skele-
ton abstraction. To meet this requirement, our building block library heavily
relies on generic programming and compile time specialization by the means of
C++ templates, in a manner inspired by expression template techniques [15].
Template specializations provide node functions. Figure 4 gives a example of a
generated decoder for N = 8, calling template instances of the node functions.
B: partial sum type; R: LLR/λ type; F/G/H/X: Scalar standard SC function ver-
sions; FI/GI/HI/XI SIMD versions. Remaining template parameters are offsets
and chunk sizes to control data layout.

Fig. 5. Example of the C++ implementation of the f function in P-EDGE (the sequen-
tial version is in the left whereas the SIMD one is in the right).

A single SIMD set is needed because SIMD routines are common to both
intra-SIMD and inter-SIMD. In the later case, the generated decoder packs as
many frames together from the frame stream as the vector size in a transparent
manner. In both cases, offsets are fully precomputed at compile time. Intra-
SIMD exploits SIMD units without increasing the decoder latency, since it still
processes frames one at a time and thus preserves fine grain frame pipelining.
However, at leaf nodes and nearby, too few elements remain to fill SIMD units.
For instance, 4-way SIMD registers are fully filled only at level 2 and above. Thus,
Intra-SIMD will only be effective on trees that can be heavily pruned from these
numerous scalar nodes. Inter-SIMD does not suffer from this problem, since
SIMD register lanes are filled by LLRs and bits from multiple frames instead.
However, the decoder needs to wait for enough frames to arrive, which increases
latency, and to interleave the LLRs from these frames (gather) before proceeding.
It also needs to de-interleave the resulting data (the bits) after decoding (scatter).
Refer to [8] for more details about the interleaving process.

The framework instantiates scalar or SIMD functions as appropriate (hence
the two sets of functions). These two sets of functions are themselves indepen-
dent on the element type. Scalar functions are datatype-parametered templates.
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SIMD functions use the template-based MIPP intrinsics wrapper library devel-
oped by one of the authors to benefit from SSE, AVX and NEON flavors SIMD
instruction sets in a portable and extensible manner. As an example, the generic
scalar and SIMD implementations of the f function are shown in Fig. 5. We also
tried an auto-vectorized approach but even if all the routines were well vector-
ized (from the compiler report), the performance was, at least, 3 times slower
than the MIPP handwritten versions.

The decoder stores its state using two data buffers, one for the LLR values
(λ) and the other for the bits (partial sums s). The “logical” tree layout is
implemented as a simple and efficient heap vector data layout. Traversing the
tree therefore corresponds to moving through the array, at different offsets and
considering different index intervals. The LLR offset is computed from the graph
depth d (or the node vertical indexing) as follows:

offλ(d = 0) = 0, offλ(d > 0) =
d∑

i=1

N

2i−1
. (2)

Given l the lane (or the node horizontal indexing), the bit offset is determined
as follows:

offs(d, l) =
N

2d
× l. (3)

The LLR buffer size is 2N and the bit buffer is N , for a frame of N bits. Thus,
the memory footprint per frame is:

memfp = N × (2 × sizeof(LLR) + sizeof(bit)). (4)

LLRs element size is 4 bytes (float) or 1 byte (fixed point numbers). The Inter-
SIMD version also employs a bit packing memory footprint reduction tech-
nique [8] to pack several bits together by using shifts and masking instructions.

5 Related Works

Polar codes [2] keep on gaining attention from circuits and systems designers.
The practical interest of these codes comes from the possibility to implement
them efficiently in software. Software implementations were proposed in [5] on
x86 processor targets, using SIMD instructions to speed-up single frame decoding
(intra-frame parallelism). In addition to SIMD optimizations, the tree pruning
step described in Sect. 3 was also applied to the decoder in [12]. Moreover, fixed
point representation was implemented in order to speed up the decoding process.
This modification of the data format has a negligible impact on error correction
quality while enabling better throughput. The authors proposed to improve the
throughput performance by auto-generating the source code of their floating
point decoders [11]. A second set of works [8] has considered an another way to
take advantage of SIMD processing capabilities. Authors focused on inter-frame
parallelism using both SIMD and multi-thread parallelization. Indeed, this app-
roach enables constant parallelism level during the overall decoding process, at

adrien.cassagne@inria.fr



312 A. Cassagne et al.

the cost of an increased latency. Throughputs achieved using this approach and
the associated implementation optimizations were about ×4 to ×8 times higher
than [5]. An ARM-based implementation was also explored in [7] to enable low
power consumption software decoding for a potential use on consumer devices.

The P-EDGE philosophy differs from these previous approaches by promot-
ing separation of concerns and genericity as first class objectives to enable exper-
imenting with multiple optimization strategies. Results presented in Sect. 6 show
that these objectives are not incompatible with performance.

Concerning automatic generation of high performance libraries, ATLAS gen-
erator [18], LGen [14] and SPIRAL [10] are examples for linear algebra libraries
and signal processing domains, all resorting to autotuning to find the best ver-
sion. LGen and SPIRAL generate optimized code from a Domain Specific Lan-
guage (DSL). A different generative approach is adopted by Eigen [6] or uBLAS
[17]. While Eigen focuses on structural recursion, it is applied to matrices and not
to trees. They use C++ templates to optimize the code at compile time. Com-
paratively, the technique presented in this paper combines the two generative
approaches: the generator produces code from an initial formulation, optimized
by rewriting rules. The second step also optimizes code from C++ templates.

6 Evaluation

In this section we first describe the protocol we used, after that we provide a
performance comparison between the state-of-the-art and P-EDGE. At the end
we discuss the exploring capabilities of our framework.

Table 1. Performance evaluation platforms.

x86-based ARMv7-based prev. work arch. [11]

CPU Intel Xeon E31225
3.10 Ghz

ARM Cortex-A15
MPCore 2.32 GHz

Intel Core i7-2600
3.40 GHz

Cache 32KB L1I/L1D,
256KB L2 L3
6 MB

32KB L1I/L1D, L2
1024KB No L3

32KB L1I/L1D, L2
256KB L3 8 MB

Compiler GNU g++ 4.8 GNU g++ 4.8 GNU g++ 4.8

The platforms used for performance evaluation are shown in Table 1. Unless
stated otherwise, each measure is obtained as the best of ten runs of a 10 s
simulation, taking into account frame loading and result storing. SNR (Signal
Noise Ratio) is set to 2.5 dB for tests with 1/5 and 1/2 rates, and to 4.0 dB for
the 5/6, 0.84, and 9/10 rate tests. Colors differentiate the codes rates of the Polar
Code, point shapes differentiate decoder types (Intra-SIMD vs Inter-SIMD).
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6.1 Comparison Between P-EDGE and the State of the Art

Figure 6 shows P-EDGE intra-frame throughput on different architectures. Our
generic framework performance outperforms previous work decoder results
(between 10 % and 25 % higher). This is confirmed in Table 2 which compares P-
EDGE with the state-of-the-art result samples for some specific rates reported
in [11]. The throughput of the inter-frame implementation is shown in Fig. 7
for different architectures. Again, the results confirm that our generic approach
overtakes handwritten code (also between 10 % and 25 % higher on x86).

Intra frame vectorization (32-bit, float) 
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Fig. 6. Performance comparison between several code rates of 32-bit floating point
decoding stages (running on the IntelR©XeonR©CPU E31225 and, respectively, on the
NvidiaR©Jetson TK1R©CPU A15).

Table 2. Comparing P-EDGE with a state-of-art software polar decoder, for codes of
rate 0.84 and rate 0.9, using Intra-SIMD. The two cross marks show state-of-the art
performance results reported in [11], for comparison.

(N,K) Decoder Info T/P (Mb/s) Latency (µs)

(16384, 14746) prev. work [11] 292 50

this work 341 43

(32768, 27568) prev. work [11] 220 125

this work 241 114

(32768, 29492) prev. work [11] 261 113

this work 293 101

For all the test series, the bandwidth first increases with codeword size, as the
tree pruning becomes increasingly more effective with larger trees. The effect is
stronger for Intra-SIMD where pruning also results in removing inefficient scalar
nodes. However, beyond a codeword size point which depends on the architecture
and on the selected SIMD version, performance decreases again due to L1 cache
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Inter frame vectorization (8-bit, char)

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

6 7 8 9 10 11 12 13 14 15 16

C
od

ed
 th

ro
ug

hp
ut

 (
M

bi
t/s

)

Codewords size (n = log2(N))

Intel Xeon CPU E31225 (SSE4.1 SIMD)

P-Edge, rate 5/6
Handw., rate 5/6
P-Edge, rate 1/2
Handw., rate 1/2

 100

 150

 200

 250

 300

 350

 400

 450

 500

6 7 8 9 10 11 12 13 14 15 16

Codewords size (n = log2(N))

Nvidia Jetson TK1 CPU A15 (NEON SIMD)

Fig. 7. Performance comparison between several code rates of 8-bit fixed point
decoding stages (running on the IntelR©XeonR©CPU E31225 and, respectively, on the
NvidiaR©Jetson TK1R©CPU A15). Circles show P-EDGE results. Triangles show our
former “handwritten” implementation results [8].

Table 3. Code size (in KB) of the generated decoders depending on the number of
bits N per frame (code respectively compiled with AVX1 instructions for the 32-bit
decoders and with SSE4.1 instructions for the 8-bit decoders). For comparison, code
size without compression are shown in parentheses.

Decoder N = 26 N = 28 N = 210 N = 212 N = 214 N = 216

inter 32-bit, R = 1/2 1 (7) 2 (24) 7 (77) 9 (254) 19 (736) 40 (2528)

inter 32-bit, R = 5/6 1 (4) 2 (19) 4 (53) 7 (167) 16 (591) 32 (1758)

intra 32-bit, R = 1/2 1 (4) 3 (16) 9 (56) 8 (182) 19 (563) 38 (1947)

intra 32-bit, R = 5/6 1 (3) 3 (13) 6 (38) 7 (126) 20 (392) 27 (1365)

inter 8-bit, R = 1/2 1 (5) 2 (22) 7 (72) 8 (252) 17 (665) 36 (2220)

inter 8-bit, R = 5/6 1 (4) 2 (18) 4 (51) 6 (191) 14 (461) 26 (1555)

misses, not only L1D but L1I as well. Indeed, decoders are generated as straight-
line code (no recursive calls), with all node computations put in sequence. This
improves performance for small to medium codeword size, up to the point where
the compiled binary exceeds the L1I cache size. We mitigated this issue by reduc-
ing decoder binary sizes using two compression techniques: (1) in the generated
code, we moved the buffer offsets from template arguments to function arguments,
which enabled the compiler to factorize more function calls than before (improve-
ment by a factor of 10), (2) we implemented a sub-tree folding algorithm in the
generator, to detect multiple occurrences of a same sub-tree and to put the corre-
sponding code into a dedicated function (improvement by a factor of 5 for N = 216,
the compression ratio increases with the size of the tree).

Table 3 shows the binary code size of the decoders depending on N . The
results which exceed the 32 KB of the L1I cache are highlighted in bold font.
Sub-tree folding was enabled starting from N = 212 because there is an overhead
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(at run-time) when using this technique. P-EDGE decoder code sizes without
compression are shown in parentheses: we can observe a huge improvement, until
N = 214 the code size never exceeds the L1I cache anymore.

6.2 Exploring Respective Optimization Impacts with P-EDGE

In this sub-section the compression techniques have been disabled.

Impact of the different optimizations on the throughput
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Fig. 8. Throughput depending on the different optimizations for N = 2048, for intra-
frame vectorization on the left and intra-frame vectorization on the right, resp. (on the
IntelR©XeonR©CPU E31225).

The tree pruning step has a dramatical effect in general. For example, the
reference code for a rate of 1/2 has 2047 nodes, whereas only 291 nodes remain
in the pruned version. However, the individual effect of each rewriting rule is not
trivial. The plots in Fig. 8 show the respective impact of several rewriting rules
(cuts, repetitions, single parity checks (SPC)), with N = 2048 and multiple code
rates, for Intra-SIMD and Inter-SIMD respectively. The purpose of the plots is
to show that no single rewriting rule dominates for every code rate, and that
the respective impact of each rule may vary a lot from rate to rate, making
the case for the flexible, extensible architecture of P-EDGE. Indeed, P-EDGE’s
rewriting rule set can also be enriched with rules for specific ranges of code rate.
For instance, the rule Single Parity Check (SPC) has been applied with different
level limits for 9/10 code rate, where it has a significant impact and may benefit
from fine tuning.

A comparison between the performance of the different decoder instances
obtained from the same code is shown in Fig. 9. Only codeword sizes of more
than 28 are shown, as smaller sizes are of little interest in practice. One can see
that for a given bit rate, the best version depends on the codeword size. Inter-
SIMD dominates for a 1/2 rate, while Intra-SIMD dominates for a 5/6 rate on
code size larger than 212. This shows the interest of having both intra-frame and
inter-frame SIMD in the same framework.
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7 Conclusion and Future Works

In this paper, we have developed a framework that enables exploring optimiza-
tions for Successive Cancellation decoders of the Polar Codes family while enforc-
ing a clear separation of concerns between the generic, abstract algorithmic level
and the low-level architecture dependent on building block implementations.
The benefits in terms of software design and flexibility are not overshadowed
by prohibitive run-time performance results. On the contrary, the use of a spe-
cialized skeleton generator to produce optimized compile-time decoders enables
performance levels to match, and even to exceed state of art implementations.

Future work will in priority be dedicated to a more in-depth performance
analysis, for instance by applying the Roof-line model [19] or even better the
Execution-Cache-Memory (ECM) model [16], would also give us much more
insight about the remaining code optimization head-room, as the algorithm tend
to be inherently memory bound. Finally, we intend to stress-test the genericity
of our framework on other decoder variants from the Polar Codes family.
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